Data Requirement

EPA OPPTS 870.3650 OECD 422

STUDY NO. 03-4242

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY WITH

REPRODUCTION/DEVELOPMENTAL TOXICITY AND

NEUROTOXICITY SCREENING IN RATS VIA

WHOLE-BODY INHALATION EXPOSURES

Amended Final Report

VOLUME III of III

Performed by: Huntingdon Life Sciences (HLS)

100 Mettlers Road

East Millstone, New Jersey 08875-2360

Submitted to: American Petroleum Institute (API)

1220 L Street, Northwest

Washington, D.C. 20005-4070

Date:

15 August 2008

Amended Date:

14 May 2010

Page 498 of 1012

TABLE OF CONTENTS

VOLUME III

COVER PAGE	498
TABLE OF CONTENTS	
SATELLITE ANIMALS	
M. Individual Animal Termination History	500
N. Individual Clinical Observations	
O. Individual Clinical Observations During Gestation	509
P. Individual Maternal Clinical Observations During Lactation	
Q. Prem ating Individual Body Weights	
R. Prem ating Individual Body Weight Gain	
S. Individual Gestation Body Weights	
T. Individual Gestation Body Weight Gain	
U. Individual Maternal Lactation Body Weights	
V. Individual Maternal Lactation Body Weight Gain	
W. P remating Individual Feed Consumption	
X. Individual Gestation Feed Consumption	
Y. Individual Maternal Lactation Feed Consumption	
Z. Individual Estrous Cycle Data	
AA. Individual Mating Assignments	
BB. Individual Delivery and Litter Data	
CC. Individual Pup Sex and Status During Lactation	
DD. Individual Maternal Necropsy Observations	
EE. Individual Parental Organ Weights	
FF. Individual Pup Clinical Observations During Lactation	
GG. Individual Pup Body Weights	
HH. Individual Pup Necropsy Observation	
MISCELLANEOUS	
APPENDICES	
II. Inhalati on Report	652
JJ. Analytical Report	681
KK. Neurobehavioral Positive Control Data	688
LL. Protocol and Protocol Amendments	784
MM. Testing Facility Personnel	821
NN. 2-Week Range-Finding Study Report	822
OO Report Amendments	1011

DEMALES SPOKES A DOM

APPENDIX M

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL ANIMAL TERMINATION HISTORY

	TYPE OF	DATE OF	STUDY	PREGNANCY
ANIMAL#	DEATH	DEATH	DAY	STATUS
1542	TERMINAL SACRIFICE	11-NOV-03	43	P
1543	TERMINAL SACRIFICE	10-NOV-03	42	P
1544	TERMINAL SACRIFICE	12-NOV-03	44	P
1545	TERMINAL SACRIFICE	9-NOV-03	41	P
1546	TERMINAL SACRIFICE	9-NOV-03	41	P
1547	TERMINAL SACRIFICE	11-NOV-03	43	P
1548	TERMINAL SACRIFICE	9-NOV-03	41	P
1549	TERMINAL SACRIFICE	9-NOV-03	41	P
1550	TERMINAL SACRIFICE	11-NOV-03	43	P
1551	TERMINAL SACRIFICE	11-NOV-03	43	P
1552	TERMINAL SACRIFICE	10-NOV-03	42	P
1553	TERMINAL SACRIFICE	12-NOV-03	44	P

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX M

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL ANIMAL TERMINATION HISTORY

	TYPE OF	DATE OF	STUDY	PREGNANCY
ANIMAL#	DEATH	DEATH	DAY	STATUS
2542	TERMINAL SACRIFICE	11-NOV-03	43	P
2543	TERMINAL SACRIFICE	15-NOV-03	47	P
2544	TERMINAL SACRIFICE	14-NOV-03	46	P
2545	TERMINAL SACRIFICE	8-NOV-03	40	P
2546	TERMINAL SACRIFICE	12-NOV-03	44	P
2547	TERMINAL SACRIFICE	12-NOV-03	44	P
2548	TERMINAL SACRIFICE	12-NOV-03	44	P
2549	TERMINAL SACRIFICE	9-NOV-03	41	P
2550	TERMINAL SACRIFICE	9-NOV-03	41	P
2551	TERMINAL SACRIFICE	9-NOV-03	41	P
2552	TERMINAL SACRIFICE	9-NOV-03	41	P
2553	TERMINAL SACRIFICE	9-NOV-03	41	P

APPENDIX M

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL ANIMAL TERMINATION HISTORY

	TYPE OF	DATE OF	STUDY	PREGNANCY
ANIMAL#	DEATH	DEATH	DAY	STATUS
3542	TERMINAL SACRIFICE	11-NOV-03	43	p
3543	TERMINAL SACRIFICE	12-NOV-03	44	P
3544	TERMINAL SACRIFICE	10-NOV-03	42	P
3545	TERMINAL SACRIFICE	10-NOV-03	42	P
3546	TERMINAL SACRIFICE	8-NOV-03	40	P
3547	TERMINAL SACRIFICE	12-NOV-03	44	P
3548	TERMINAL SACRIFICE	10-NOV-03	42	P
3549	TERMINAL SACRIFICE	9-NOV-03	41	P
3550	TERMINAL SACRIFICE	9-NOV-03	41	P
3551	TERMINAL SACRIFICE	11-NOV-03	43	P
3552	TERMINAL SACRIFICE	8-NOV-03	40	P
3553	TERMINAL SACRIFICE	12-NOV-03	44	P

APPENDIX M

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL ANIMAL TERMINATION HISTORY

FEMALES GROU	JP 4 9000 PPM				
ANIMAL#	TYPE OF DEATH	DATE OF	STUDY	PREGNANCY	
ANIMAL#	DEAIR	DEATH	DAY	STATUS	
4542	TERMINAL SACRIFICE	8-NOV-03	40	P	
4543	TERMINAL SACRIFICE	10-NOV-03	42	P	
4544	TERMINAL SACRIFICE	11-NOV-03	43	P	
4545	TERMINAL SACRIFICE	12-NOV-03	44	P	
4546	TERMINAL SACRIFICE	12-NOV-03	44	P	
4547	TERMINAL SACRIFICE	11-NOV-03	43	P	
4548	TERMINAL SACRIFICE	9-NOV-03	41	P	
4549	TERMINAL SACRIFICE	8-NOV-03	40	P	
4550	TERMINAL SACRIFICE	11-NOV-03	43	P	
4551	TERMINAL SACRIFICE	12-NOV-03	44	P	
4552	TERMINAL SACRIFICE	11-NOV-03	43	P	
4553	TERMINAL SACRIFICE	11-NOV-03	43	P	

Individual Clinical Observations	
Satellite Study	
Preface	Appendix N

For summarization purposes, descriptive comments [i.e., location of scab(s) and sore(s), etc.] are not presented in this appendix. These data are contained in the study raw data if needed.

Note: Observations for all animals in groups 1-3 and most of group 4, for study Days 21-35, can be found in gestation observational tables.

APPENDIX N

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL CLINICAL OBSERVATIONS

FEMALES (GROUP 1 0 PPM		
ANIMAL#	OBSERVATIONS	DAY OF STUDY	
1542	WITHIN NORMAL LIMITS ALOPECIA - EXTREMITIES/SNOUT		P P P 2
1543	WITHIN NORMAL LIMITS		рррр
1544	WITHIN NORMAL LIMITS		рррр
1545	WITHIN NORMAL LIMITS		РРРР
1546	WITHIN NORMAL LIMITS ALOPECIA - EXTREMITIES/SNOUT		P P P 2
1547	WITHIN NORMAL LIMITS		рррр
1548	WITHIN NORMAL LIMITS		РРРР
1549	WITHIN NORMAL LIMITS		рррр
1550	WITHIN NORMAL LIMITS		рррр
1551	WITHIN NORMAL LIMITS		рррр
1552	WITHIN NORMAL LIMITS		рррр
1553	WITHIN NORMAL LIMITS		рррр

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX N

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL CLINICAL OBSERVATIONS

FEMALES .	GROUP 2 900 PPM	INDIVIDUAL CLINI	ICAL OBSERVATIONS
ANIMAL#	OBSERVATIONS	DAY OF STUDY	
2542	WITHIN NORMAL LIMITS		р р р р
2543	WITHIN NORMAL LIMITS		рррр
2544	WITHIN NORMAL LIMITS ALOPECIA - EXTREMITIES/SNOUT		P P P 3
2545	WITHIN NORMAL LIMITS		рррр
2546	WITHIN NORMAL LIMITS		рррр
2547	WITHIN NORMAL LIMITS		рррр
2548	WITHIN NORMAL LIMITS		рррр
2549	WITHIN NORMAL LIMITS		рррр
2550	WITHIN NORMAL LIMITS		РРРР
2551	WITHIN NORMAL LIMITS ALOPECIA - EXTREMITIES/SNOUT		P P P
2552	WITHIN NORMAL LIMITS ALOPECIA - EXTREMITIES/SNOUT		P P P 3
2553	WITHIN NORMAL LIMITS		PPP

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX N

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL CLINICAL OBSERVATIONS

	GROUP 3 3000 PPM	INDIVIDUAL CLIP	CAL OBSERVATIONS
ANIMAL	# OBSERVATIONS	STUDY	
354	2 WITHIN NORMAL LIMITS		рррр
354	3 WITHIN NORMAL LIMITS		PPPP
354	4 WITHIN NORMAL LIMITS		рррр
354	5 WITHIN NORMAL LIMITS		рррр
354	6 WITHIN NORMAL LIMITS		рррр
354	7 WITHIN NORMAL LIMITS		рррр
354	WITHIN NORMAL LIMITS		рррр
354	WITHIN NORMAL LIMITS		рррр
355	O WITHIN NORMAL LIMITS		PPPP
355	1 WITHIN NORMAL LIMITS		рррр
355	WITHIN NORMAL LIMITS ALOPECIA - EXTREMITIES/SNOUT		P P P 2
355	3 WITHIN NORMAL LIMITS		рррр

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX N

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL CLINICAL OBSERVATIONS

FEMALES (GROUP 4 9000 PPM	INDIVIDORE CHINA	COLD OBSERVATIONS
#LIAMINA	OBSERVATIONS	DAY OF STUDY	
4542	WITHIN NORMAL LIMITS		P P P P
4543	WITHIN NORMAL LIMITS ALOPECIA - EXTREMITIES/SNOUT		P P P 2
4544	WITHIN NORMAL LIMITS		P P P P
4545	WITHIN NORMAL LIMITS		рррр
4546	WITHIN NORMAL LIMITS ALOPECIA - EXTREMITIES/SNOUT		P P P 3
4547	WITHIN NORMAL LIMITS		рррр
4548	WITHIN NORMAL LIMITS		рррр
4549	WITHIN NORMAL LIMITS		P P P P
4550	WITHIN NORMAL LIMITS		рррр
4551	WITHIN NORMAL LIMITS		РРРР
4552	WITHIN NORMAL LIMITS		рррр
4553	WITHIN NORMAL LIMITS		P P P P P P

Huntingdon Life Sciences	03-4242	Page 509 Final Report
Indiv	vidual Clinical Observations During Gestation Satellite Study	
	Preface	Appendix O

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX O

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL CLINICAL OBSERVATIONS DURING GESTATION

GROUP 1	0 PPM						
FEMALE#	OBSERVATIONS	DAY OF GESTATION	0 1 2 3		1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7		
1542	ALOPECIA - EXTREMITIES/SNOUT		2	2	2	2	
1543	WITHIN NORMAL LIMITS		P	P	P	P	
1544	WITHIN NORMAL LIMITS		P	P	P	P	
1545	WITHIN NORMAL LIMITS		P	P	P	P	
1546	ALOPECIA - EXTREMITIES/SNOUT		2	2	3	3	
1547	WITHIN NORMAL LIMITS		P	р	P	P	
1548	WITHIN NORMAL LIMITS		P	P	P	P	
1549	WITHIN NORMAL LIMITS		P	Р	p	P	
1550	WITHIN NORMAL LIMITS	·	P	P	P	Р	
1551	WITHIN NORMAL LIMITS		P	Р	P	P	
1552	WITHIN NORMAL LIMITS		P	P	P	P	
1553	WITHIN NORMAL LIMITS		Р	P	Р	P	

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX O

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL CLINICAL OBSERVATIONS DURING GESTATION

GROUP 2	900 PPM	DOAL CLINICAL OBSER	VATIONS DUR	ING GESTATION			
FEMALE#	OBSERVATIONS	DAY OF GESTATION	0 1 2 3	1 4 5 6 7 8 9 0	1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7	1 1 2 8 9 0	
2542	WITHIN NORMAL LIMITS		P	P	P	P	
2543	WITHIN NORMAL LIMITS		P	P	P	P	
2544	ALOPECIA - EXTREMITIES/SNOUT		3	3	3	3	
2545	WITHIN NORMAL LIMITS		P	P	P	P	
2546	WITHIN NORMAL LIMITS		P	P	P	P	
2547	WITHIN NORMAL LIMITS		P	P	P		
2548	WITHIN NORMAL LIMITS		P	P	P	P	
2549	WITHIN NORMAL LIMITS		P	P	P	P	
2550	WITHIN NORMAL LIMITS		P	P	P	P	
2551	ALOPECIA - EXTREMITIES/SNOUT		2	2	3	3	
2552	ALOPECIA - EXTREMITIES/SNOUT		3	3	3	3	
2553	WITHIN NORMAL LIMITS		Р	Р	P	P	

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX O

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL CLINICAL OBSERVATIONS DURING GESTATION

GROUP 3	3000 PPM	OAL CLINICAL OBSER	VATIONS DUR	ING GESTATION			
FEMALE#	OBSERVATIONS	DAY OF GESTATION	0 1 2 3	1 4 5 6 7 8 9 0	1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7	1 1 2	
3542	WITHIN NORMAL LIMITS		P	P	Р	P	
3543	WITHIN NORMAL LIMITS		P	P	P	P	
3544	WITHIN NORMAL LIMITS		P	P	P	P	
3545	WITHIN NORMAL LIMITS		P	P	p	Р	
3546	WITHIN NORMAL LIMITS		P	P	P	P	
3547	WITHIN NORMAL LIMITS		P	P	P	P	
3548	WITHIN NORMAL LIMITS		P	P	P	P	
3549	WITHIN NORMAL LIMITS		P	P	P	P	
3550	WITHIN NORMAL LIMITS		P	P	P	P	
3551	SCABS WITHIN NORMAL LIMITS		P	P	Þ	P	
3552	ALOPECIA - EXTREMITIES/SNOUT		2	2	2	2	
3553	WITHIN NORMAL LIMITS		P	P	P	P	

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX O

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL CLINICAL OBSERVATIONS DURING GESTATION

GROUP 4	9000 PPM						
FEMALE#	OBSERVATIONS	DAY OF GESTATION	0 1 2 3	1 4 5 6 7 8 9 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
4542	WITHIN NORMAL LIMITS		P	р	P	P	
4543	ALOPECIA - EXTREMITIES/SNOUT ALOPECIA - GENERAL		2	2	3 2	3 2	
4544	WITHIN NORMAL LIMITS		P	P	P	P	
4545	WITHIN NORMAL LIMITS		P	P	P	P	
4546	ALOPECIA - EXTREMITIES/SNOUT ALOPECIA - GENERAL		3	3 2	3 2	3 2	
4547	WITHIN NORMAL LIMITS		P	P	P	P	
4548	WITHIN NORMAL LIMITS		P	P	Р	P	
4549	WITHIN NORMAL LIMITS		P	P	P	P	
4550	WITHIN NORMAL LIMITS		P	P	P	P	
4551	WITHIN NORMAL LIMITS		P	P	p	P	
4552	WITHIN NORMAL LIMITS		P	P	P	P	

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX P

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL MATERNAL CLINICAL OBSERVATIONS DURING LACTATION

GROUP 1	O PPM

		DAY OF			
FEMALE#	OBSERVATIONS	LACTATION	0 1 2 3	34.	
1542	TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT		2	P 3	
1543	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P P	
1544	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P P	P P	
1545	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		РР	P P	
1546	TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT		3	P 3	
1547	TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT		2	P 2	
1548	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		РР	P P	
1549	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		РР	P P	
1550	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		р	P P	
1551	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P P	

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX P

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL MATERNAL CLINICAL OBSERVATIONS DURING LACTATION

GROUP	1	0	PPM

FEMALE#	OBSERVATIONS	DAY OF LACTATION	0 1 2 3	3 4	
1552	WITHIN NORMAL LIMITS TERMINAL SACRIFICE RED EXUDATE FROM ANO-GENITAL AREA		P P	P P	
1553	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P P	P P	

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX P

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL MATERNAL CLINICAL OBSERVATIONS DURING LACTATION

GROUP 2 90	O PPM			
FEMALE#	OBSERVATIONS	DAY OF LACTATION	0 1 2	3 4
2542	WITHIN NORMAL LIMITS		P	p
	TERMINAL SACRIFICE			P
2543	WITHIN NORMAL LIMITS		P	p
	TERMINAL SACRIFICE			P
	RED/BROWN STAINS AG AREA		1	
2544	TERMINAL SACRIFICE			P
	ALOPECIA - EXTREMITIES/SNOUT		3	3
2545	WITHIN NORMAL LIMITS		P	
	TERMINAL SACRIFICE			P
	ALOPECIA - EXTREMITIES/SNOUT		2	2
2546	WITHIN NORMAL LIMITS		PΡ	P
	TERMINAL SACRIFICE			P
2547	WITHIN NORMAL LIMITS		PΡ	P
	TERMINAL SACRIFICE			P
2548	WITHIN NORMAL LIMITS		P P	P
~	TERMINAL SACRIFICE			P
2549	WITHIN NORMAL LIMITS		P	P
	TERMINAL SACRIFICE			P
	RED/BROWN STAINS AG AREA		1	
2550	WITHIN NORMAL LIMITS		PР	P
	TERMINAL SACRIFICE			P

APPENDIX P

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL MATERNAL CLINICAL OBSERVATIONS DURING LACTATION

GROUP 2	900 PPM				 	
FEMALE#	OBSERVATIONS	DAY OF LACTATION	0 1 2 3	3 4		
2551	TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT		3	P 3	 	
2552	TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT		3 3	P 3		
2553	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		Р	P P		

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX P

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL MATERNAL CLINICAL OBSERVATIONS DURING LACTATION

FEMALE#	OBSERVATIONS	DAY OF LACTATION	0 1 2	. 3 4	
· • • • • • • • • • • • • • • • • • • •			·		
3542	WITHIN NORMAL LIMITS			P	
	TERMINAL SACRIFICE			P	
	SCABS		P		
3543	WITHIN NORMAL LIMITS		РР	₽	
	TERMINAL SACRIFICE			P	
3544	WITHIN NORMAL LIMITS		PР	P	
3311	TERMINAL SACRIFICE		F F	p	
3545	WITHIN NORMAL LIMITS		P	P	
	TERMINAL SACRIFICE			P	
3546	WITHIN NORMAL LIMITS		PР	P	
	TERMINAL SACRIFICE			P	
3547	WITHIN NORMAL LIMITS		P P	P	
	TERMINAL SACRIFICE			P	•
3548	WITHIN NORMAL LIMITS		рр	P	
3340	TERMINAL SACRIFICE		F F	P	
3549	WITHIN NORMAL LIMITS		P	P	
	TERMINAL SACRIFICE			P	
3550	WITHIN NORMAL LIMITS		P	P	
	TERMINAL SACRIFICE			P	
3551	WITHIN NORMAL LIMITS			P	
	TERMINAL SACRIFICE			P	
	SCABS		PΡ		
	RED/BROWN STAINS AG AREA		1		

APPENDIX P

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL MATERNAL CLINICAL OBSERVATIONS DURING LACTATION

GROUP 3	3000 PPM	WAD CHINICAD OBSE	RVALIONS I	JURING	LACIATION
FEMALE#	OBSERVATIONS	DAY OF LACTATION	0 1 2	3 4	
3552	TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT		3	P 3	
3553	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		РР	P P	

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX P

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL MATERNAL CLINICAL OBSERVATIONS DURING LACTATION

FEMALE#	OBSERVATIONS	DAY OF LACTATION	0 1 2	3 4	
4542	WITHIN NORMAL LIMITS		P	P	
	TERMINAL SACRIFICE			P	
4543	TERMINAL SACRIFICE			P	
	ALOPECIA - EXTREMITIES/SNOUT	•	3 3	3	
	ALOPECIA - GENERAL		2 2		
	RED/BROWN STAINS AG AREA		1		
4544	WITHIN NORMAL LIMITS		РР	P	
	TERMINAL SACRIFICE			P	
4545	WITHIN NORMAL LIMITS		P		
	TERMINAL SACRIFICE			₽	
	ALOPECIA - EXTREMITIES/SNOUT			2	
	RED/BROWN STAINS AG AREA		P		
4546	TERMINAL SACRIFICE			P	
	ALOPECIA - EXTREMITIES/SNOUT		2 2		
	ALOPECIA - GENERAL		2 2	2	
4547	WITHIN NORMAL LIMITS		P	P	
	TERMINAL SACRIFICE			P	
4548	WITHIN NORMAL LIMITS			P	
	TERMINAL SACRIFICE			P	
	ALOPECIA - EXTREMITIES/SNOUT		2 2		
4549	TERMINAL SACRIFICE			P	
	ALOPECIA - EXTREMITIES/SNOUT		2	2	

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX P

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL MATERNAL CLINICAL OBSERVATIONS DURING LACTATION

GROUP 4	9000 PPM					
FEMALE#	OBSERVATIONS	DAY OF LACTATION	0 1 2	3 4		
4550	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		РР	P P		
4551	WITHIN NORMAL LIMITS TERMINAL SACRIFICE RED/BROWN STAINS AG AREA INCISORS BROKEN/MISSING		P P P	P P		
4552	TERMINAL SACRIFICE ALOPECIA - GENERAL		2 2	P 2		
4553	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P P	P P		

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX Q

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

FEMALES GRO	UP 1 0	PPM			PRE	MATING :	INDIVID	JAL BOD	Y WEIGH	ITS (GRA	AMS)				
	DAY	OF ST	UDY											 	
ANIMAL#	-7	0	4	7	11	14	18	21	25	28	32	35	39		
1542	166	202	213	219	235	231								 	
1543	158	204	210	218	232	239									
1544	168	214	227	235	246	250									
1545	158	187	192	191	200	208									
1546	156	185	188	203	209	213									
1547	172	217	233	237	250	253									
1548	175	207	219	222	239	244									
1549	163	183	180	187	193	200									
1550	163	198	207	209	216	210									
1551	157	189	199	213	223	216									
1552	161	185	199	213	226	236									
1553	165	206	220	227	241	237	248								
MEAN	163	198	207	214	226	228	248								
S.D.	6.0	11.9	16.2	15.5	18.3	17.9	0.0								
N	12	12	12	12	12	12	1								

APPENDIX Q

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

FEMALES GRO	OUP 2 90	O PPM			PRI	EMATING	INDIVID	UAL BOI	OY WEIG	HTS (GR	AMS)				
	DAY	OF ST	UDY				<u>-</u>							 	
ANIMAL#	-7	0	4	7	11	14	18	21	25	28	32	35	39		
2542	170	208	226	232	250	253								 	
2543	165	211	225	230	243	256	262								
2544	159	198	215	221	224	236	248								
2545	153	195	204	207	218	231									
2546	167	206	209	217	225	222									
2547	162	198	212	220	238	239	249								
2548	164	207	214	230	235	244									
2549	157	191	200	200	211	223									
2550	157	188	201	197	211	216									
2551	178	225	228	232	245	256									
2552	167	205	208	211	224	236									
2553	160	190	196	200	213	217									
MEAN	163	202	211	216	228	236	253								
S.D.	6.8	10.6	10.7	13.1	13.8	14.4	7.4								
N	12	12	12	12	12	12	3								

APPENDIX Q

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

FEMALES C	FROUP 3 30	00 PPM			PRE	MATING	INDIVII	DUAL BO	DY WEIG	SHTS (GI	RAMS)				
	DAY	OF ST	צמטי						·					 	
ANIMAL#	-7	0	4	7	11	14	18	21	25	28	32	35	39		
3542	165	202	200	216	227	222			•					 	
3543	159	200	210	218	231	233									
3544	156	193	195	211	222	231									
3545	166	198	211	215	233	235									
3546	162	204	220	222	237	246									
3547	157	201	212	220	230	234									
3548	157	174	189	200	214	215									
3549	173	194	209	226	238	244									
3550	169	195	205	225	239	244									
3551	163	196	217	223	239	244									
3552	159	196	207	203	219	233									
3553	174	217	223	230	244	236									
MEAN	163	197	208	217	231	235									
S.D.	6.2	9.8	10.0	9.1	9.0	9.2									•
N	12	12	12	12	12	12									

APPENDIX Q

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

FEMALES GROU	IP 4 90	00 PPM			PI	REMATING	: INDIV	IDUAL B	ODY WEI	GHTS (GRAMS)			
	DAY	OF ST	UDY											
ANIMAL#	-7	0	4	7	11	14	18	21	25	28	32	35	39	
4542	168	197	208	209	220	229								
4543	175	224	237	248	267	273								
4544	158	196	204	213	222	227								
4545	160	195	203	207	216	219								
4546	164	210	213	219	234	239								
4547	158	200	211	222	237	236								
4548	172	227	239	244	251	266								
4549	166	203	215	222	234	244								
4550	165	209	214	220	230	223								
4551	157	202	208	220	234	236								
4552	162	189	199	211	218	223								
4553	152	195	199	213	222	233	235	256	270	285	316	344	386	
MEAN	163	204	213	221	232	237	235	256	270	285	316	344	386	
S.D.	6.5	11.7	13.0	13.0	14.8	16.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
			1.0	10	10	1.0	-	-	1	1	1	1	1	

MEAN

S.D.

N

10.5

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

8.7

-3

5.6

5.0

3.7

-7

-7

-3

6.0

0.0

APPENDIX R

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

PREMATING INDIVIDUAL BODY WEIGHT GAIN (GRAMS)

FEMALES GROUP 1 0 PPM ______ DAY OF STUDY ANIMAL# -7-0 0-4 4-7 7-11 11-14 14-18 18-21 21-25 25-28 28-32 32-35 35-39 0-14 -1

APPENDIX R

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

PREMATING INDIVIDUAL BODY WEIGHT GAIN (GRAMS)

ANIMAL#	DAY -7-0	OF STUD	¥ 4-7			14-18	18-21			35-39	0-14	
2542	38	18	6	18	4			 	 		45	
2543	46	14	5	13	13	6					45	
2544	40	17	6	3	12	12					38	
2545	42	9	3	11	12						35	
2546	39	3	8	8	-3						16	
2547	35	14	8	18	1	11					41	
2548	43	7	16	5	9						37	
2549	35	9	1	10	13						32	
2550	31	13	-4	14	5						28	
2551	47	3	4	13	11						31	
2552	38	3	3	13	13						32	
2553	30	6	5	12	5						27	
EAN	39	10	5	12	8	9					34	
.D.	5.5	5.4	4.8	4.5	5.3	3.2					8.2	
N	12	12	12	12	12	3					12	

FEMALES GROUP 3

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

3000 PPM

APPENDIX R

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

PREMATING INDIVIDUAL BODY WEIGHT GAIN (GRAMS)

	DAY	OF STU	DY					*						
ANIMAL#	-7-0	0 - 4	4 - 7	7-11	11-14	14-18	18-21	21-25	25-28	28-32	32-35	35-39	0-14	
3542	37	-2	15	11	-4								20	
3543	41	10	9	13	2								33	
3544	38	2	16	11	9								37	
3545	32	1.3	4	18	2								37	
3546	42	16	2	15	9								42	
3547	45	11	8	11	4								33	
3548	17	15	11	15	1								41	
3549	21	15	17	12	6								50	
3550	26	10	20	14	5								49	
3551	33	21	6	16	6								49	
3552	37	11	-3	16	14								38	
3553	42	7	7	14	-8								20	
EAN	34	11	9	14	4								37	
.D.	8.8	6.2	6.9	2.3	5.9								10.0	
N	12	12	12	12	12								12	

N

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX R

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

PREMATING INDIVIDUAL BODY WEIGHT GAIN (GRAMS) FEMALES GROUP 4 9000 PPM ______ DAY OF STUDY -7-0 0-4 4-7 7-11 11-14 14-18 18-21 21-25 25-28 28-32 32-35 35-39 0-14 ANIMAL# -1 -7 MEAN S.D. 7.9 3.2 4.0 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.8 6.0

APPENDIX S

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

		DAY OF	GESTATION	
ANIMAL#	0	7	14	20
1542	243	284	330	406
1543	243	273	306	376
1544	258	293	328	396
1545	205	232	261	312
1546	217	245	287	372
1547	270	290	332	404
1548	242	290	323	386
1549	200	236	271	346
1550	223	259	292	351
1551	231	260	294	349
1552	236	276	315	371
1553	246	292	320	391
MEAN	235	269	305	372
S.D.	20.6	22.4	23.9	27.9
N	12	12	12	12

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX S

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

		DAY OF	GESTATION	
#JAMINA	0	7	14	20
2542	260	307	346	441
2543	260	292	320	376
2544	241	274	308	361
2545	226	252	282	347
2546	234	267	301	366
2547	253	291	332	419
2548	249	284	313	385
2549	221	255	298	361
2550	212	262	296	371
2551	255	289	329	405
2552	233	265	299	363
2553	217	256	294	370
MEAN	238	274	310	380
S.D.	17.1	17.8	18.7	27.6
N	12	12	12	12

APPENDIX S

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

GROUP 3 3	000 PPM				TVIDON GESTATION BODI WEIGHTS (GRANS)
		DAY OF	GESTATION		
ANIMAL#	0	7	14	20	
3542	241	280	336	414	
3543	245	288	335	396	
3544	231	263	301	373	
3545	232	271	309	380	
3546	245	283	328	412	
3547	240	271	306	384	
3548	221	261	298	373	
3549	242	293	336	419	
3550	240	290	331	409	
3551	252	282	319	388	
3552	226	266	302	392	
3553	265	324	386	478	
MEAN	240	281	324	401	
S.D.	11.8	17.4	24.6	28.9	
И	12	12	12	12	

APPENDIX S

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

		DAY OF	GESTATION	
ANIMAL#	0	7	14	20
4542	225	265	288	360
4543	276	322	366	446
4544	239	266	309	376
4545	227	257	290	373
4546	247	273	307	370
4547	247	285	318	394
4548	265	307	347	413
4549	241	285	315	384
4550	235	265	299	381
4551	251	292	333	398
4552	224	259	289	343
MEAN	243	279	315	385
S.D.	16.4	20.9	25.1	27.5
N	11	11	11	11

APPENDIX T

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

	DAY O	F GESTATI	ON	
ANIMAL#	0 - 7	7 - 14	14 - 20	0 - 20
1542	41	46	76	163
1543	30	33	70	133
1544	35	35	68	138
1545	27	29	51	108
1546	29	42	85	155
1547	21	42	71	134
1548	48	33	63	144
1549	35	35	75	145
1550	36	33	59	128
1551	29	34	55	118
1552	40	39	57	136
1553	45	29	71	145
MEAN	35	36	67	137
S.D.	8.0	5.3	9.9	15.1
N	12	12	12	12

12

12

12

12

APPENDIX T

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

	DAY O	F GESTAT	ION	
#LAMINA	0 - 7	7 - 14	14 - 20	0 - 20
2542	47	38	95	181
2543	32	28	56	116
2544	34	34	53	120
2545	26	30	6 5	121
2546	33	34	65	132
2547	37	42	87	166
2548	35	29	71	136
2549	34	43	63	139
2550	49	34	76	159
2551	34	40	76	150
2552	32	34	64	130
2553	39	38	76	153
MEAN	36	35	71	142
S.D.	6.5	4.9	12.2	20.1

APPENDIX T

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

	DAY O	F GESTATI	ON				
ANIMAL#	0 - 7	7 - 14	14 - 20	0 - 20			
3542	39	56	79	174	 	 	
3543	43	47	62	151			
3544	32	38	73	142			
3545	38	38	71	147			
3546	38	45	85	167			
3547	31	35	78	144			
3548	40	37	75	152			
3549	51	43	83	176			
3550	50	41.	78	169			
3551	30	37	69	136			
3552	40	36	89	166			
3553	59	62	91	213			
MEAN	41	43	78	161			
S.D.	8.7	8.5	8.6	20.9			
M	12	12	13	12			

APPENDIX T

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

GROUP 4	9000 PPM			11021 V 11	JOAN GESTATION BODY WEIGHT GAIN (GRAND)
	DAY O	F GESTATI	ON		
ANIMAL#	0 - 7	7 - 14	14 - 20	0 - 20	
4542	40	23	72	135	
4543	46	43	80	170	
4544	27	43	67	137	
4545	29	34	82	145	
4546	26	34	63	123	
4547	38	34	76	147	
4548	42	40	66	148	
4549	44	30	69	143	
4550	30	35	81	146	
4551	41	41	65	147	
4552	35	30	54	119	
MEAN	36	35	71	142	
S.D.	7.1	6.3	8.8	13.7	
N	11	11	11	11	

APPENDIX U

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

	DAY OF LA	ACTATION
Animal No.	1	4
1542	282	294
1543	265	276
1544	296	288
1545	228	250
1546	248	272
1547	284	289
1548	295	325
1549	240	259
1550	252	258
1551	257	270
1552	274	300
1553	301	309
MEAN	269	283
S.D.	24.0	22.5
N	12	12

APPENDIX U

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

GROUP 2	000 PPM	
	DAY OF L	ACTATION
Animal No.	1	4
2542	321	327
2543	284	308
2544	249	280
2545	245	255
2546	272	280
2547	294	306
2548	267	284
2549	250	267
2550	253	283
2551	297	310
2552	281	304
2553	263	286
MEAN	273	291
S.D.	23.1	20.4
N	12	12

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX U

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

GROUP 3 30	000 PPM		1100 100 100 100 100 100 100 100 (Citatio)
	DAY OF L	ACTATION	······································
Animal No.	1	4	
- 			
3542	292	282	
3543	278	302	
3544	260	273	
3545	276	284	
3546	294	305	
3547	286	261	
3548	267	283	
3549	299	306	
3550	298	322	
3551	282	292	
3552	269	274	
3553	344	355	
MEAN	287	295	
S.D.	21.7	25.5	
N	12	12	

APPENDIX U

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

	DAY OF L	ACTATIO
Animal No.	1	4
4542	268	262
4543	332	342
4544	278	287
4545	277	288
4546	274	271
4547	287	286
4548	302	317
4549	285	294
4550	273	279
4551	298	296
4552	274	292
4553	268	275
MEAN	284	291
S.D.	18.5	21.2
N	12	12

APPENDIX V

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

FEMALE#	DAY OF LACTATIO	N .
1542	12	
1543	11	
1544	-8	
1545	23	
1546	25	
1547	5	
1548	30	
1549	19	
1550	6	
1551	14	
1552	26	
1553	8	
MEAN	14	
S.D.	10.8	
N	12	

APPENDIX V

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

GROUP 2	900 PPM	
FEMALE#	DAY 1 - 4	OF LACTATION
2542	6	
2543	25	
2544	32	
2545	10	
2546	9	
2547	12	
2548	17	
2549	16	
2550	30	
2551	13	
2552	23	
2553	24	
MEAN	18	
S.D.	8.6	
N	12	

APPENDIX V

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

GROUP 3	3000 PPM	INDIVIDUAL MAIRMAL LACIATION BODY WEIGHT GAIN (GRAMS)
FEMALE#	DAY OF LACTA 1 - 4	TION
3542	-10	
3543	24	
3544	13	
3545	7	
3546	11	
3547	~25	
3548	16	
3549	8	
3550	24	
3551	10	
3552	4	
3553	11	
MEAN	8	
S.D.	13.7	
N	12	

APPENDIX V

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

GROUP 4	9000 PPM	
FEMALE#	DAY 1 - 4	OF LACTATION
4542	-5	
4543	10	
4544	9	
4545	11	
4546	- 3	
4547	-2	
4548	15	
4549	9	
4550	6	
4551	-2	
4552	18	
4553	7	
MEAN	6	
S.D.	7.5	·
N	12	

Huntingdon Life Sciences	;
--------------------------	---

Pa	ge	546
Final	Re	port

Premating Individual Feed Consumption	
Preface	Appendix W

APPENDIX W

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

PREMATING INDIVIDUAL FEED CONSUMPTION (GRAMS/KG/DAY)

FEMALES	GROUP 1 0	PPM		PREMATING INDIVIDUAL FEED CONSUMPTION (GRAMS/KG/DAY)
	DAY	OF ST	עסע צמט	
ANIMAL#		7	14	
1542	107	90	83	
1543	102	85	82	
1544	107	91	88	
1545	92	82	83	
1546	100	87	79	
1547	94	84	76	
1548	98	89	88	
1549	SF	87	97	
1550	96	82	76	
1,551	92	89	80	
1552	101	91	86	
1553	100	94	83	
MEAN	99	87	83	
S.D.	5.2	3.8	5.7	
N	11	12	12	

SF=Spilled Feeder

APPENDIX W

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

PREMATING INDIVIDUAL FEED CONSUMPTION (GRAMS/KG/DAY)

FEMALES	GROUP 2 90	OO PPM		**************************************
	DA	OF S	rudy	
ANIMAL#	0	7	14	
2542	103	87	86	
2543	101	89	81	
2544	101	87	77	
2545	106	91	90	
2546	100	82	79	
2547	100	87	81	
2548	116	92	85	
2549	107	85	91	
2550	106	87	87	
2551	105	82	85	
2552	104	84	84	
2553	99	88	84	
MEAN	104	87	84	
s.D.	4.7	3.2	4.1	
N	12	12	12	

APPENDIX W

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE BODY INHALATION EXPOSURES

PREMATING INDIVIDUAL FEED CONSUMPTION (GRAMS/KG/DAY)

FEMALES	GROUP 3	300	O PPM		
		DAY	OF STU	DY	
ANIMAL#		0	7	14	
3542		102	84	84	
3543		102	86	86	
3544		102	90	83	
3545		108	91	90	
3546		103	89	86	
3547		102	83	78	
3548		90	91	84	
3549		98	95	82	
3550		105	100	86	
3551		100	90	80	
3552		103	86	91	
3553		113	87	85	
MEAN		102	89	85	
S.D.		5.6	4.8	3.7	
N		12	12	12	

FEMALES GROUP 4

Page 550

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

9000 PPM

APPENDIX W

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

PREMATING INDIVIDUAL FEED CONSUMPTION (GRAMS/KG/DAY)

	DAY	OF STU	DΥ	
ANIMAL#	0	7	14	
4542	92	84	84	
4543	101	88	81	
4544	102	89	83	
4545	100	83	82	•
4546	103	85	81	
4547	111	96	89	
4548	103	84	84	
4549	109	91	87	
4550	100	81	78	
4551	SF	92	89	
4552	99	CF	79	
4553	110	91	90	
MEAN .	103	88	84	
S.D.	5.6	4.7	4.0	
Ñ	11	11	12	

APPENDIX X

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL GESTATION FEED CONSUMPTION -- (GRAMS/KG/DAY)

GROUP 1 0	PPM			
		ESTATION		
ANIMAL#	0 - 7	7 14	14 - 20	
1542	82	81	66	
1543	78	76	64	
			68	
1544	83	78		
1545	79	76	63	
1546	83	80	71	
1547	72	73	63	
1548	86	79	71	
1549	96	84	73	
1550	87	83	73	
1551	82	78	67	
1552	87	81	67	
1553	92	80	68	
MEAN	84	79	68	
S.D.	6.3	3.0	3.5	
N	12	12	12	

APPENDIX X

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL GESTATION FEED CONSUMPTION -- (GRAMS/KG/DAY)

GROUP 2	900 PPM			(Single)
ANIMAL#		GESTATION 7 - 14		
2542	85	79	72	
2543	75	74	68	
2544	EF	71	57	
2545	59	77	69	
2546	44	80	69	
2547	86	80	68	
2548	120	83	73	
2549	76	85	70	
2550	93	85	66	
2551	65	80	70	
2552	84	78	75	
2553	88	83	73	
MEAN	79	80	69	
S.D.	19.9	4.3	4.5	
N	11	12	12	
EF=Empt	ty Feeder			

APPENDIX X

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL GESTATION FEED CONSUMPTION -- (GRAMS/KG/DAY)

GROUP 3	3000 PPM			,
ANIMAL#		GESTATION 7 - 14		
3542	83	85	70	
3543	87	85	65	
3544	83	79	69	
3545	91	89	74	
3546	87	85	74	
3547	75	79	70	
3548	85	80	67	
3549	91	82	71	
3550	98	88	75	
3551	78	79	68	
3552	86	79	73	•
3553	103	EF	79	
MEAN	87	83	71	
S.D.	7.8	3.8	3.9	
N	12	11	12	
EE 8	ber Boodes			

EF=Empty Feeder

APPENDIX X

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL GESTATION FEED CONSUMPTION -- (GRAMS/KG/DAY)

	DAY OF G	ESTATION		
ANIMAL#	0 - 7	7 - 14	14 - 20	
4542	89	81	69	
4543	86	85	72	
4544	81	84	69	
4545	84	78	72	
4546	79	78	66	
4547	92	89	74	
4548	85	80	CF	
4549	87	75	68.	
4550	81	74	66	
4551	95	87	67	
4552	86	78	67	
MEAN	86	81	69	
S.D.	4.8	4.9	3.0	
N	11	11	10	

APPENDIX Y

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

GROUP 1	O PPM	THE TAIL THE MICHIEL CONTRACT (CHARLE) NO. 1811
ANIMAL#	1 - 4	LACTATION
1542	109	
1543	102	
1544	83	
1545	128	
1546	114	
1547	98	
1548	131	
1549	110	
1550	93	
1551	118	
1552	118	
1553	118	
MEAN	110	
S.D.	14.0	
NT	17	

APPENDIX Y

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

		(0.02.10) 1.01
GROUP 2	900 · PPM	
		LACTATION
#JAMINA	1 - 4	
2542	86	
2543	136	
2544	106	
2545	119	
2546	128	
2547	111	
2548	119	
2549	146	
2550	112	
2551	104	
2552	141	
2553	104	
MEAN	118	
S.D.	17.5	
N	12	

APPENDIX Y

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

GROUP 3	3000 PPM	,
ANIMAL#		LACTATION
3542	101	
3543	119	
3544	133	
3545	88	
3546	97	
3547	85	
3548	113	
3549	95	
3550	111	
3551	105	
3552	92	
3553	105	
MEAN	104	
S.D.	13.7	
N	12	

APPENDIX Y

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

GROUP 4	9000 PPM	
	DAY OF LA	CTATION
ANIMAL#	1 - 4	
4542	83	
4543	79	
4544	101	
4545	120	
4546	86	·
4547	88	
4548	97	
4549	98	
4550	106	
4551	111	
4552	146	
4553	126	
MEAN	103	
S.D.	19.7	
N	12	

APPENDIX Z

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL ESTROUS CYCLE DATA

GROUP 1	O PPM					01000 011111			
FEMALE#	DAY OF EVAL 15 16 17 18	LUATION 19 20 21 22 2	23 24 25 26	5 27 28			 , ,	 	
1542	D D D/S						 	 	
1543	D D/S								
1544	D D D/C								
1545	/s								
1546	D/S								
1547	D D D/C								
1548	/s								
1549	D/S								
1550	/M D D /S								
1551	D D D/S								
1552	D /C								
1553	D D D/E	C							
D=DIESTRUS	M=METESTRUS	P=PROESTRUS	E=ESTRUS	S=SPERM	C=COPULATORY	PLUG	 ••	 	

APPENDIX Z

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL ESTROUS CYCLE DATA

GROUP 2	900 PPM	I	NDIVIDUAL ESTROUS CYCLE DATA
FEMALE#	DAY OF EVALUATI	ION 20 21 22 23 24 25 26 27 2	D
2542	D D/P S		
2542	DDDDD	D /8	
2544			
2545	/c	2 / 5	
2546	/M D D /S		
2547	/M D D /E E	С	
2548	D D D/S		
2549	/s		
2550	D /C		
2551	D/S		
2552	/s		
2553	D /S		
D=DIESTRUS	M=METESTRUS P=P	PROESTRUS E=ESTRUS S=SPE	RPM C-CODIII.ATODY DI IIC

STRUS M=METESTRUS P=PROESTRUS E=ESTRUS S=SPERM C=COPULATORY PLUG

APPENDIX Z

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL ESTROUS CYCLE DATA

GROUP 3	3000 PPM			11.21	LECILE EDINGO	O CICLL DAIR	•		
	DAY OF EVAL						• • • • • • • • • • • • • • • • • • • •	 	
FEMALE#	15 16 17 18	19 20 21 22 2	23 24 25 26	27 28					
3542	D D D/C							 	
3543	D D D/S								
3544	D /S								
3545	D/P C								
3546	/s								
3547	D D D/C								
3548	D/S								
3549	D/S								
3550	D/S								
3551	D D /E S								
3552	/s								
3553	/M D D /S								
D=DIESTRUS	M=METESTRUS	P=PROESTRUS	E=ESTRUS	S-SPERM	C-CODITIATORY	DIJIC		 	

D=DIESTRUS M=METESTRUS P=PROESTRUS E=ESTRUS S=SPERM C=COPULATORY PLUG

APPENDIX Z

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL ESTROUS CYCLE DATA

GROUP 4	9000 PPM
	DAY OF EVALUATION
FEMALE#	15 16 17 18 19 20 21 22 23 24 25 26 27 28
4542	/s
4543	D D/C
4544	ס ס ס ס /s
4545	/M D D/C
4546	/M D D/S
4547	/M D D/C
4548	/s
4549	/s
4550	D D /S
4551	/м рр/с
4552	D D/C
4553	ם מ מ מ מ מ מ מ מ א א/ס ס
D=DIESTRUS	M=METESTRUS P=PROESTRUS E=ESTRUS S=SPERM C=COPULATORY PLUG

D=DIESTRUS M=METESTRUS P=PROESTRUS E=ESTRUS S=SPERM C=COPULATORY PLUG

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX AA

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL MATING ASSIGNMENTS

GROUP 1 (PPM						
Female No.	Male No.	Alternate Male No.	Sperm/Plug	Outcome	Date of Cohabitation	Date of Insemination	Date of Parturition
1542	1030		+	P	13-OCT-03	17-0CT-03	7-NOV-03
1543	1031		+	P	13-OCT-03	16-0CT-03	6-NOV-03
1544	1032		+	. P	13-OCT-03	17-OCT-03	8-NOV-03
1545	1033		+	P	13-OCT-03	14-OCT-03	5-NOV-03
1546	1034		+	P	13-OCT-03	15-OCT-03	5-NOV-03
1547	1035		+	P	13-OCT-03	17-OCT-03	7-NOV-03
1548	1036 ·		+	P	13-OCT-03	14-OCT-03	5-NOV-03
1549	1037		+	P	13-OCT-03	15-OCT-03	5-NOV-03
1550	1038		+	P	13-OCT-03	17-OCT-03	7-NOV-03
1551	1039		+	P	13-OCT-03	17-OCT-03	7-NOV-03
1552	1040		+	P	13-OCT-03	15-OCT-03	6-NOV-03
1553	1041		+	P	13-OCT-03	18-OCT-03	8-NOV-03

^{+ =} Sperm/Plug Positive - = Sperm/Plug Negative N = Not Mated

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX AA

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL MATING ASSIGNMENTS

CEUID	2	900	DDM

		Alternate			Date of	Date of	Date of
emale No.	Male No.	Male No.	Sperm/Plug	Outcome	Cohabitation	Insemination	Parturition
2542	2030		+	P	13-OCT-03	17-OCT-03	7-NOV-03
2543	2031		+	P	13-OCT-03	20-OCT-03	11-NOV-03
2544	2032		+	P	13-OCT-03	20-OCT-03	10-NOV-03
2545	2033		+	P	13-OCT-03	14-QCT-03	4-NOV-03
2546	2034		+	P	13-OCT-03	17-OCT-03	E0-VOV-8
2547	2035		+	P	13-OCT-03	19-OCT-03	8-NOV-03
2548	2036		+	P	13-OCT-03	17-OCT-03	8-NOV-03
2549	2037		+	P	13-OCT-03	14-OCT-03	5-NOV-03
2550	2038		+	P	13-OCT-03	15-OCT-03	5-NOV-03
2551	2039		+	P	13-OCT-03	15-OCT-03	5-NOV-03
2552	2040		+	P	13-OCT-03	14-OCT-03	5-NOV-03
2553	2041		+	P	13-OCT-03	15-OCT-03	5-NOV-03

^{+ =} Sperm/Plug Positive - ≈ Sperm/Plug Negative N = Not Mated

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX AA

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL MATING ASSIGNMENTS

	-		
GROUP	7	3000	DDM

~					· - • •		
Female No.	Male No.	Alternate Male No.	Sperm/Plug	Outcome	Date of Cohabitation	Date of Insemination	Date of Parturition
3542	3030		+	P	13-OCT-03	17-OCT-03	7-NOV-03
3543	3031		+	P	13-OCT-03	17-OCT-03	8-NOV-03
3544	3032		+	P	13-OCT-03	15-OCT-03	6-NOV-03
3545	3033		+	P	13-OCT-03	16-OCT-03	6-NOV-03
3546	3034		+	P	13-OCT-03	14-OCT-03	4-NOV-03
3547	3035		+	P	13-OCT-03	17-OCT-03	8-NOV-03
3548	3036		+	P	13-OCT-03	15-OCT-03	6-NOV-03
3549	3037		+	P	13-OCT-03	15-OCT-03	5-NOV-03
3550	3038		+	P	13-OCT-03	15-OCT-03	5-NOV-03
3551	3039		+	P	13-OCT-03	17-OCT-03	7-NOV-03
3552	3040		+	P	13-OCT-03	14-OCT-03	4-NOV-03
3553	3041		+	. P	13-OCT-03	17-OCT-03	8-NOV-03

^{+ =} Sperm/Plug Positive - = Sperm/Plug Negative N = Not Mated

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX AA

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL MATING ASSIGNMENTS

emale No.	Male No.	Alternate Male No.	Crown (Dluc	0	Date of	Date of	Date of
emaie No.	Male NO.	Maie NO.	Sperm/Plug	Outcome	Cohabitation	Insemination	Parturition
4542	4030		+	P	13-OCT-03	14-OCT-03	4-NOV-03
4543	4031		+	P	13-OCT-03	16-OCT-03	6-NOV-03
4544	4032		+	₽.	13-OCT-03	17-OCT-03	7-NOV-03
4545	4033		+	P	13-OCT-03	17-OCT-03	8-NOV-03
4546	4034		+	P	13-OCT-03	17-OCT-03	8-NOV-03
4547	4035		+	P	13-OCT-03	17-OCT-03	7-NOV-03
4548	4036		+	₽	13-OCT-03	14-OCT-03	5-NOV-03
4549	4037		+	₽	13-OCT-03	14-OCT-03	4-NOV-03
4550	4038		+	P	13-OCT-03	17-OCT-03	7-NOV-03
4551	4039		+	P	13-OCT-03	17-OCT-03	8-NOV-03
4552	4040		+	P	13-OCT-03	16-OCT-03	7-NOV-03
4553	4041		_	P	13-OCT-03		7-NOV-03

^{+ =} Sperm/Plug Positive - = Sperm/Plug Negative N = Not Mated

APPENDIX BB

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL DELIVERY AND LITTER DATA

GROUP 1	O PPM	

	LITTE				NUM		LIVE PUPS		TOTAL IMPLAN-	DURATION OF GESTATION		
	LIVE	DEAD	TOTAL		0		1	ינו	AYS 4	CORPORA LUTEA	TATIONS	(DAYS)
FEMALE#	N	N	N	М	F	М	F	М	F	HOTHA	N	N
1542	18	0	18	8	9	8	8	8	7	18	18	21
1543	16	0	16	7	9	7	9	7	9	19	17	21
1544	16	0	16	7	9	7	9	7	8	18	16	22
1545	13	ō	13	7	6	7	5	7	5	20	14	22
1546	14	0	14	7	7	7	7	7	7	18	17	-21
1547	15	ō	15	8	7	8	7	8	7	17	17	21
1548	11	ō	11	6	5	6	5	6	5	. 17	14	22
1549	12	ō	12	7	5	7	5	7	5	12	12	21
1550	12	0	12	6	6	6	6	6	6	15	13	21
1551	14	0	14	6	8	6	8	6	8	16	14	21
1552	13	0	13	6	7	6	7	6	7	14	14	22
1552	12	ō	12	7	5	7	5	7	5	15	15	21
MEAN	13.8	0.0	13.8	6.8	6.9	6.8 6	5.8	6.8	6.6	16.6	15.1	21.3
S.D.	2.1	0.0	2.1	0.7	1.6	0.7 1	1.5	0.7	1.4	2.3	1.9	0.5
N N	12	12	12	12	12	12	12	12	12	12	12	12

GROUP 2 900 PPM

2549

2550

2551

2552

2553

MEAN

S.D.

N

Page 568

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

16

16

16

15

15

12

16

16

16

15

15

1.1

12

0

0

15.6 0.1 15.7

12

1.2 0.3

APPENDIX BB

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL DELIVERY AND LITTER DATA

				- 					- -				
				NUME		LIVE AYS	E PUPS	CORPORA	TOTAL IMPLAN~	DURATION OF GESTATION			
	LIVE	DEAD	TOTAL		0		1		4		LUTEA `	TATIONS	(DAYS)
FEMALE#	N	N	N	М	F	М	F	M	F			N	N
2542	14	1	15	6	8	6	8	6	7		19	17	21
2543	15	0	15	8	7	8	7	8	7		17	16	22
2544	18	0	18	6	12	6	12	6	12		19	18	21
2545	14	0	14	6	8	6	8	6	8		15	14	21
2546	15	0	15	10	5	10	5	10	5		15	15	22
2547	16	0	16	8	8	7	8	7	8		17	17	20
2548	17	0	17	8	9	8	9	8	9		18	18	22

9

8 7

5 10

7.4 8.2 7.3 8.1 7.3 7.9

1.4 1.7 1.4 1.7 1.4 1.8

12 12

9

8 7

5 10

12 12

7

9

12 12

8 7

5 10

16

21

17

18

17

17.4

1.7

12

16

17

16

15

16

16.3

1.2

12

22

21

21

22

21

21.3

0.7

12

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX BB

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL DELIVERY AND LITTER DATA

GROUP 3 3000 PPM

FEMALE#	LITTE N	R DEL: DEAD N	(VERED TOTAL N	м	0 F	М	NUM 1 F		F LIVI DAYS 4 F	E PUPS	CORPORA LUTEA	TOTAL IMPLAN- TATIONS N	DURATION OF GESTATION (DAYS) N
				••	•	••	-	••	-			.,	.,
3542	17	0	17	8	9	8	9	8	9		20	18	21
3543	13	0	13	6	7	6	6	6	6		15	15	22
3544	16	0	16	9	7	9	6	9	6		20	19	22
3545	- 13	0	13	7	6	7	6	7	5		18	17	21
3546	16	0	16	6	10	6	7	6	7		18	16	21
3547	14	0	14	6	8	6	8	6	8		15	14	22
3548	15	0	15	5	10	5	10	4	9		15	15	22
3549	16	0	16	7	9	7	9	6	9		20	16	21 _.
3550	14	0	14	9	5	9	5	9	5		17	16	21
3551	15	1	16	9	6	9	6	9	6		17	17 '	21
3552	15	0	15	10	5	10	5	10	5		16	16	21
3553	18	0	18	8	10	8	10	8	10		19	18	22
MEAN	15.2	0.1	15.3	7.5	7.7	7.5	7.3	7.3	7.1		17.5	16.4	21.4
S.D.	1.5	0.3	1.5	1.6	1.9	1.6	1.9	1.8	1.8		2.0	1.4	0.5
N	12	12	12	12	12	12	12	12	12		12	12	12

4549

4550

4551

4552

4553

MEAN

S.D.

N

Page 570

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

14

16

14

13

16

12

14.6 0.3 14.8

1.1 0.5 1.0

16

15

13

16

APPENDIX BB

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL DELIVERY AND LITTER DATA

GROUP 4 9000	PPM			. 		- -						
	LITTE	R DELI	VERED				NUMB		LIVE PUPS	CORPORA	TOTAL IMPLAN-	DURATION OF GESTATION
	LIVE	DEAD	TOTAL		0		1		4	LUTEA	TATIONS	(DAYS)
FEMALE#	N	N	N	М	F	М	F	М	F		N	N
4542	15	0	15	6	9	6	9	6	9	18	15	21
4543	16	0	16	7	9	7	8	6	7	17	16	21
4544	14	0	14	7	7	7	7	7	7	15	15	21
4545	13	1	14	8	5	7	5	7	5	14	14	22
4546	14	0	14	8	6	8	6	8	6	15	14	22
4547	15	0	15	6	9	6	9	6	9	17	17	21
4548	15	1	16	5	10	5	10	5	10	17	17	22
4549	14	0	14	6	8	6	8	6	8	14	14	21

97

5 9

6 7

6.6 8.0 6.5 7.9 6.4 7.8

1.2 1.6 1.2 1.6 1.2 1.6

12 12 12 12 12 12

9 7

5 9

6 7

6 10

18

15

17

17

16.2

1.5

12

17

15

14

16

15.3

1.2

12

21

22

22

no day 0

21.5

0.5

11

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX CC

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP SEX AND STATUS DURING LACTATION

		PU	- #																																			
FEMALE#		1	2	2	3	l	•	4		5	(5	•	7	8	3		9	1	0	11		12		13		14	1	.5	16		17	18	19	20	21	22	23
1542	UM	0	MK	4	MK	4	MK	4	MK	4	MK	4	MK	4	MK	4	MK	4	FD	1	FK	4	FK	 4 E	M 2	 2 F	 K 4	FK	. 4	FK 4	 4 E	FK 4	FK 4					
1543	MK	4	MK	4	MK	4	MK	4	MK	4	MK	4	MK	4	FK	4 E	K 4	4 F	K 4	FK	: 4	FK ·	4															
1544	MK	4	MK	4	MK	4	MK	4	MK	4	MK	4	FD	3	FK	4	FK	4	MK	4	FK	4	FK	4 E	K 4	4 F	K 4	FK	4	FK ·	4							
1545	FD	0	MK	4	MK	4	MK	4	MK	4	MK	4	MK	4	MK	4	FΚ	4	FΚ	4	FK	4	FK ·	4 E	K 4	1												
1546	MK	4	MK	4	MK	4	MK	4	MK	4	ΜK	4	MK	4	FΚ	4	FK	4	FK	4	FK	4	FK ·	4 F	K 4	4 F	K 4											
1547	MK	4	MK	4	MK	4	ΜK	4	MK	4	MK	4	MK	4	MK	4	FK	4	FK	4	FK	4	FK ·	4 E	K 4	1 F	K 4	FK	4									
1548	MK	4	MK	4	MK	4	MK	4	MK	4	MK	4	FΚ	4	FK	4	FK	4	FΚ	4	FK	4																
1549	MK	4	MK	4	MK	4	ΜK	4	MK	4	MK	4	MK	4	FK	4	FK	4	FΚ	4	FK	4	FK ·	4														
1550	MK	4	MK	4	MK	4	MK	4	MK	4	MK	4	FΚ	4	FK	4	FK	4	FΚ	4	FK	4	FK ·	4														
1551	MK	4	MK	4	ΜK	4	MK	4	MK	4	MK	4	FΚ	4	FK	4 E	K 4	4 F	K 4																			
1552	MK	4	MK	4	MK	4	ΜK	4	FK	4	FΚ	4	FK	4	FΚ	4	FK	4	FΚ	4	MK	4	FK ·	4 M	IK 4	1												
1553	MK	4	MK	4	MK	4	MK	4	MK	4	MK	4	MK	4	FK ·	4																						

SEX CODE PRECEDES PUP STATUS CODE. NUMERICAL VALUE INDICATES DAY OF LACTATION. SEX CODES: M-MALE F-FEMALE U-UNCERTAIN

PUP STATUS CODES: A-ALIVE D-DIED M-MISSING K-SCHEDULED SACRIFICE

Note: The uncertain sex of pup number 1542-1 not included in Summary Table 27.

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX CC

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP SEX AND STATUS DURING LACTATION

GROUP 2	900 PPM																																						
FEMALE#			P #			3		4		5		5	7	, . .		3		9	10)	11		12		13		14	1	5	16	17		18	19	2	:0	21	22	23
					- - -																								-			-					-		
2542	MS	5	MK	4	MK	4	MK	. 4	MK	4	MK	4	MK	4	FΚ	4	FΚ	4	FΚ	4	FΚ	4	FΚ	4	FK 4	4 F	M 2	FK	4										
2543	MK	4	MK	4	MK	4	MK	4	MK	4	MK	4	MK	4	MK	4	FΚ	4	FΚ	4	FΚ	4	FK	4]	FK 4	4 F	K 4	FK	4										
2544	MK	4	MK	4	MK	4	MK	4	MK	4	MK	4	FK	4	FK	4	FK	4	FΚ	4	FK	4	FK	4]	FK 4	4 F	K 4	FK	4	FK 4	FK	4 F	K 4						
2545	MK	4	MK	4	MK	4	MK	4	MK	4	MK	4	FK	4	FΚ	4	FΚ	4	FΚ	4	FΚ	4	FK	4]	FK 4	4 F	K 4	:											
2546	MK	4	MK	4	MK	4	MK	4	MK	4	MK	4	MK	4	MK	4	MK	4	MK	4	FK	4	FK	4 1	FK 4	4 F	K 4	FK	4										
2547	MK	4	MD	1	MK	4	MK	4	MK	4	MK	4	MK	4	MK	4	FK	4	FK	4	FK	4	FK	4 1	FK 4	4 F	'K 4	FK	4	FK 4									
2548	MK	4	MK	4	MK	4	MK	4	MK	4	MK	4	MK	4	MK	4	FK	4	FK	4	FK	4	FK	4 1	FK 4	4 F	K 4	FK	4	FK 4	FK	4							
2549	FD	0	MK	4	MK	4	MK	4	MK	4	MK	4	MK	4	MK	4	FM	2	FK	4	FK	4	FK	4]	FK 4	4 F	'K 4	FK	4	FK 4									
2550	MK	4	MM	1	MK	4	MK	4	MK	4	мк	4	MK	4	MK	4	FK	4	FK	4	FK	4	FK	4 1	FK 4	4 F	K 4	FK	4	FK 4									
2551																		-				-							_	FK 4									
2552																											K 4		-										
2553																											K 4		_										

SEX CODE PRECEDES PUP STATUS CODE. NUMERICAL VALUE INDICATES DAY OF LACTATION.

SEX CODES: M-MALE F-FEMALE U-UNCERTAIN

PUP STATUS CODES: A-ALIVE S-STILLBORN D-DIED M-MISSING K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX CC

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP SEX AND STATUS DURING LACTATION

GROUP 3	3000 PPM							
FEMALE#	PUP # 1 2	3 4	5 6	7 8	9 10	11 12 13 1	14 15 16 17	18 19 20 21 22 23
3542	MK 4 MK	4 MK 4 MK	4 MK 4 MK 4	MK 4 MK 4	FK 4 FK 4 F	K 4 FK 4 FK 4 FK	K 4 FK 4 FK 4 FK 4	
3543	MK 4 MK	4 MK 4 MK	4 MK 4 MK 4	FK 4 FK 4	FK 4 FK 4 F	K 4 FK 4 FM 1		
3544	FD 0 MK	4 MK 4 MK	4 MK 4 MK 4	MK 4 MK 4	MK 4 MK 4 F	K 4 FK 4 FK 4 FK	C 4 FK 4 FK 4	
3545	MK 4 MK	4 MK 4 MK	4 MK 4 MK 4	MK 4 FK 4	FK 4 FM 2 F	K 4 FK 4 FK 4		
3546	FD 0 MK	4 MK 4 MK	4 MK 4 MK 4	MK 4 FK 4	FD 1 FK 4 F	K 4 FK 4 FK 4 FK	C 4 FK 4 FM 1	
3547	MK 4 MK	4 MK 4 MK	4 MK 4 MK 4	FK 4 FK 4	FK 4 FK 4 F	K 4 FK 4 FK 4 FK	₹ 4	
3548	MK 4 MK	4 MK 4 MD	3 MK 4 FK 4	FK 4 FK 4	FK 4 FK 4 F	K 4 FM 4 FK 4 FK	C 4 FK 4	
3549	MK 4 MK	4 MM 2 MK	4 MK 4 MK 4	MK 4 FK 4	FK 4 FK 4 F	K 4 FK 4 FK 4 FK	C 4 FK 4 FK 4	
3550	MK 4 MK	4 MK 4 MK	4 MK 4 MK 4	MK 4 MK 4	MK 4 FK 4 F	K 4 FK 4 FK 4 FK	C 4	
3551	FS MK	4 MK 4 MK	4 MK 4 MK 4	MK 4 MK 4	MK 4 MK 4 F	K 4 FK 4 FK 4 FK	C 4 FK 4 FK 4	
3552	MK 4 MK	4 MK 4 MK	4 MK 4 MK 4	MK 4 MK 4	MK 4 MK 4 F	K 4 FK 4 FK 4 FK	C 4 FK 4	
3553	MK 4 MK	4 MK 4 MK	4 MK 4 MK 4	MK 4 MK 4	FK 4 FK 4 F	K 4 FK 4 FK 4 FK	C 4 FK 4 FK 4 FK 4	FK 4

SEX CODE PRECEDES PUP STATUS CODE. NUMERICAL VALUE INDICATES DAY OF LACTATION.

SEX CODES: M-MALE F-FEMALE U-UNCERTAIN

PUP STATUS CODES: A-ALIVE S-STILLBORN D-DIED M-MISSING K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX CC

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP SEX AND STATUS DURING LACTATION

GROUP 4	9000 PPM									
	PUP :	+ =								
FEMALE#	1	2 3	4	5 6	7 8 9	9 10 11	12 13 14	15 16 1	7 18 19 20 21 22	23
4542	MK 4 MI	K 4 MK	4 MK 4 MK	4 MK 4 FK	4 FK 4 FK	4 FK 4 FK 4	FK 4 FK 4 FK	4 FK 4		
4543	MD 4 M	K 4 MK	4 MK 4 MK	4 MK 4 MK	4 FK 4 FK	4 FK 4 FK 4	FM 2 FD 1 FK	4 FK 4 FK 4		
4544	MK 4 M	4 MK	4 MK 4 MK	4 MK 4 MK	4 FK 4 FK	4 FK 4 FK 4	FK 4 FK 4 FK	4		
4545	MD 0	S MK	4 MK 4 MK	4 MK 4 MK	4 MK 4 MK	4 FK 4 FK 4	FK 4 FK 4 FK	4		
4546	MK 4 M	(4 MK	4 MK 4 MK	4 MK 4 MK	4 MK 4 FK	4 FK 4 FK 4	FK 4 FK 4 FK	4		
4547	MK 4 M	C 4 MK 4	4 MK 4 MK	4 MK 4 FK	4 FK 4 FK	4 FK 4 FK 4	FK 4 FK 4 FK	4 FK 4		
4548	FS M	4 MK	4 MK 4 MK	4 MK 4 FK	4 FK 4 FK	4 FK 4 FK 4	FK 4 FK 4 FK	4 FK 4 FK 4		
4549	MK 4 M	4 MK	4 MK 4 MK	4 MK 4 FK	4 FK 4 FK	4 FK 4 FK 4	FK 4 FK 4 FK	4		
4550	MK 4 M	< 4 MK 4	4 MK 4 MK	4 MK 4 MK	4 MK 4 MK	4 FK 4 FK 4	FK 4 FK 4 FK	4 FK 4 FK 4		
4551	FS M	< 4 MK 4	4 MK 4 MK	4 MK 4 FK	4 FK 4 FK	4 FK 4 FK 4	FK 4 FK 4 FK	4 FK 4		
4552	MK 4 M	C 4 MK	4 MK 4 MK	4 MK 4 FK	4 FK 4 FK	4 FK 4 FK 4	FK 4 FK 4			
4553	MK 4 M	C 4 MK 4	4 MK 4 MK	4 MK 4 FK	4 FK 4 FK	4 FK 4 FK 4	FK 4 FK 4 FK	4 FK 4 FK 4		

SEX CODE PRECEDES PUP STATUS CODE. NUMERICAL VALUE INDICATES DAY OF LACTATION.

SEX CODES: M-MALE F-FEMALE U-UNCERTAIN

PUP STATUS CODES: A-ALIVE S-STILLBORN D-DIED M-MISSING K-SCHEDULED SACRIFICE

Printed: 17-Feb-04

Raw Data Listing of Gross Observation: Study number: 034242

Huntingdon Life Sciences Princeton Research Center Page: 1 Version 4.2.2 East Millstone, New Jersey Satellite Study

Animal number	Sex S	Group/ Subgroup	totto de wego	Date data taken	Tissue / Observation(s) Locator, Color, General, Measurements, Severity levels
1542	F	1/1		11-Nov-03	Within normal limits
1543	F	1/1	•	10-Nov-03	Within normal limits
1544	F	1/1		12-Nov-03	Within normal limits
1545	F	1/1		09-Nov-03	Within normal limits
1546	F	1/1		09-Nov-03	Within normal limits
1547	F	1/1		11-Nov-03	Within normal limits
1548	F	1/1		09-Nov-03	Within normal limits
1549	F.	1/1		09-Nov-03	Within normal limits
1550	F	1/1		11-Nov-03	Within normal limits
1551	F	1/1		11-Nov-03	Within normal limits
1552	F	1/1		10-Nov-03	Within normal limits
1553	F	1/1		12-Nov-03	Within normal limits
2542	F	2/1		11-Nov-03	Kidneys Discolored, Left, Tan, Focus, 0.2 - 0.5 cm, Slight Tissues marked 'Within normal limits': Adrenal Glands Brain Cecum Colon Duodenum Femur Femoral Marrow Heart
					Ileum Jejunum Larynx Liver Lungs Mammary-protocol Mediastinal LN Mesenteric LN Nasopharynx Ovaries Oviducts/Fallop Parathyroid Rectum/Low Colon Skin-protocol Cervical SC Thoracic SC Lumbar SC Spleen Sternum Sternal Marrow Stomach Thymus Tibial Nerve Trachea Urinary bladder Uterus Vagina Thyroid
2543	F	2/1		15-Nov-03	Within normal limits
2544	F	2/1		14-Nov-03 ·	Within normal limits
2545	F	2/1		08-Nov-03	Within normal limits

Page: 2

Version 4.2.2

Appendix DD Page 576 Raw Data Listing of Gross Observations Printed: 17-Feb-04 Huntingdon Life Sciences

Princeton Research Center East Millstone, New Jersey
Satellite Study

Study number: 034242

Animal Group/ number Sex Subgroup	Date data taken	· · · · · · · · · · · · · · · · · · ·	olor, General, Measurements, everity levels
Satellite Study			

		3					·		Sever	ity levels	
2546	F	2/1		 :	12-Nov-03	·.	Within normal	limits	g		
2547	F	2/1			12-Nov-03		Within normal	limits	s		
2548	F	2/1			12-Nov-03		Within normal	limits	s		
2549	F	2/1			09-Nov-03	:	Within normal	limits	s		
2550	F	2/1	:		09-Nov-03		Within normal	limit	s		
2551	F	2/1			09-Nov-03		Within normal	limit	s		
2552	F	2/1			09-Nov-03		Within normal	limit	s		
2553	F	2/1			09-Nov-03		Within normal	limit	s		
3542	F	3/1			11-Nov-03		Within normal	limit	s		
3543	F	3/1			12-Nov-03		Within normal	limit	s		
3544	F	3/1			10-Nov-03 10-Nov-03		Mesenteric LN Enlarged,, Tissues marked Adrenal Glan Duodenum Ileum Liver Nasopharynx Rectum/Low C Lumbar SC Stomach	'Wit	Slight hin normal limits' Brain Femur Jejunum Lungs Ovaries Skin-protocol Spleen Thymus	: Cecum Femoral Marrow Kidneys Mammary-protocol Oviducts/Fallop Cervical SC Sternum Tibial Nerve	Colon Heart Larynx Mediastinal LN Parathyroid Thoracic SC Sternal Marrow Trachea
							Urinary blad	der	Uterus	Vagina	Thyroid
3545	F	3/1			10-Nov-03		Within normal				
3546	F	3/1			08-Nov-03		Within normal				
3547	F	3/1			12-Nov-03 \		Within normal				
3548	F	3/1		;	10-Nov-03		Within normal				
3549	F	3/1			09-Nov-03	. :	Within normal	limit	s		

Appendix DD

Raw Data Listing of Gross Observations . Study number: 034242

Huntingdon Life Sciences

Princeton Research Center

East Millstone, New Jersey

Printed: 17-Feb-04 Page: 3 Version 4.2.2

Page 577

Animal number	Sex	Group/ Subgroup		·	Date data taken		Tissue /	Observation(s) Locator,	Color, General,	-
			 			.				Severity levels	;
3550	F	3/1		•	09-Nov-03	•	Within	normal limits			
3551	F	3/1			11-Nov-03		Within	normal limits			
3552	F	3/1			08-Nov-03		Within	normal limits			
3553	F	3/1			12-Nov-03		Within	normal limits			
4542	F	4/1			08-Nov-03		Within	normal limits			
4543	F	4/1			10-Nov-03		Within	normal limits			
4544	F	4/1			11-Nov-03)	Within	normal limits			
4545	F	4/1			12-Nov-03		Within	normal limits			
4546	F	4/1			12-Nov-03		Within	normal limits			
4547	F	4/1			11-Nov-03		Within	normal limits			
4548	F	4/1			09-Nov-03		Within	normal limits			
4549	F	4/1			08-Nov-03		Within	normal limits			
4550	F	4/1			11-Nov-03		Within	normal limits			
4551	F	4/1		···· .	12-Nov-03 **		Within	normal limits			
4552	F	4/1			11-Nov-03		Within	normal limits			
4553	F	4/1			11-Nov-03		Within	normal limits			

	Individual Parental Organ Weights	
	Satellite Study	
·	Preface	Appendix EE

Table of Contents

Absolute Organ Weights	579
% Organ to Body Weight Ratios	
% Organ to Brain Weight Ratios	

Key to Abbreviations:

g = Grams wt. = Weight observ. = Observed

Corresponding exposure levels for each group were as follows:

Group 1 - 0 ppm Group 2 - 900 ppm Group 3 - 3000 ppm Group 4 - 9000 ppm

Summary statistics for absolute organ weights (g) Study number: 034242

East Millstone, New Jersey

Mean:

294.8

0.1032

Huntingdon Life Sciences

Princeton Research Center

Individual Parental Organ Weights

Animal Group/ Terminal Brain Kidnevs Lungs No/sex Subgroup Body wt. (q) Adrenal Glands Heart. Liver Female Animals 1542/F 1/1 294.0 0.1002 1.9806 1.0813 12.4373 2.6487 1.4111 1543/F 1/1 275.8 0.1231 2.0492 1.0543 2.6045 12.8532 1.5772 1544/F 1/1 288.3 0.0909 2,0320 1.0546 2.2929 12,7755 1.4550 1545/F 1/1 250.4 0.0633 2.1593 0.8067 2.5894 12.2927 1.5853 1546/F 1/1 272.3 0.9616 2.7693 12.6460 0.0936 2.3479 1.7200 1547/F 1/1 289.4 0.1223 2.0326 0.9691 2.6300 13.5365 1.4515 1548/F 1/1 325.3 0.1011 2,4205 1.1695 3,1081 16.3065 1.7137 1549/F 259.2 2.2276 1/1 0.0912 0.9357 2.8516 12.6033 1.7384 1550/F 1/1 257.7 0.0891 1.9850 0.9161 2.2772 10.6622 1.3699 1551/F 1/1 12.2748 270.4 0.1043 2.0444 0.8848 2.4699 1.5995 1552/F 1/1 300.0 0.0914 2.1063 1.0626 2.4147 13.0295 1.4658 1553/F 1/1 309.4 0.0488 2.1399 1.1177 2.7338 15.0439 1.8374 Mean: 282.7 0.0933 2.1271 1.0012 2.6158 13.0385 1.5771 Standard deviation: 22.5 0.0210 0.1411 0.1059 0.2371 1.4316 0.1498 (12) Number of observ. : (12)(12)(12)(12)(12) (12)2,6297 13,5656 2542/F 2/1 326.5 0.0941 2,1578 1.0568 1.5882 2.0292 2543/F 2/1 308.2 0.0737 1.0883 2.3852 13.6593 1.4953 2544/F 2/1 280.1 0.0834 2.1325 0.9354 2.2256 13.0289 1.2102 2545/F 2/1 255.1 0.0982 2.1329 0.8595 2.5633 11.5648 1.3968 2546/F 2/1 0.8775 2.2685 14.7749 1.4204 280.1 0.0866 2.0209 2547/F 2/1 306.0 0.0862 2.0399 1.1405 2.6317 13.6683 1.5216 2.3740 11.8551 2548/F 2/1 283.6 0.1013 2.1317 1.0820 1.6876 2549/F 2/1 266.7 0.0879 2.0296 0.9380 2.8491 12.1239 1.5133 2550/F 2/1 283.2 0.0960 2.2910 0.9998 2.7743 13.8120 1.7901 2551/F 2/1 309.7 0.0825 2.1938 1.0310 2.8859 12.6161 1.7278 2552/F 2/1 2.2322 14.7566 304.0 0.0927 1.0361 2.8608 1.6849 2553/F 2/1 286.1 0.0799 2.0987 0.9390 2.8573 12.1314 1.4860 Mean: 290.8 0.0885 2.1242 0.9987 2.6088 13.1297 1.5435 Standard deviation: 0.0081 0.0864 0.0885 0.2446 1.0844 0.1630 20.4 Number of observ. : (12) (12) (12) (12)(12) (12)(12)3542/F 3/1 281.7 0.1326 2,1849 1.1488 2.7832 13.7193 1.5662 3543/F 3/1 302.0 0.0903 2.0065 1.0225 2.8254 12.5815 1.5379 3544/F 3/1 273.1 0.1065 2.1263 0.9471 2.5988 12.5414 1.3416 3545/F 3/1 283.6 0.1132 2.0206 1.1294 2.2203 12.1526 1.4236 3546/F 3/1 305.2 0.0816 2.1614 1.0752 2.7626 13.4248 1.6333 3547/F 3/1 260.5 0.1188 2.0642 0.9847 2.4650 12.4239 1.4305 1.9298 12.0641 3548/F 3/1 283.4 0.0982 0.9993 2.3290 1.4439 3549/F 306.3 2.2141 1.0649 2.9217 12.6375 1.7490 3/1 0.0983 3550/F 3/1 321.9 0.0834 2.1467 1.0800 3.0841 13.2944 1.4336 3551/F 1.0282 12.9858 1.4753 3/1 291.6 0.1080 2.0011 2.6630 3552/F 12.1402 1.6231 3/1 273.5 0.1091 2.1730 0.8852 2.6439 3553/F 3/1 354.9 0.0988 2.1623 1.2931 3.0181 15.1312 1.8363

2.0992

1.0549

2.6929

12.9247

1.5412

Page 579 Printed: 04-Mar-04

> Page: 1 Version 4.2.2

Summary statistics for absolute organ weights (g) Study number: 034242

East Millstone, New Jersey

Huntingdon Life Sciences

Princeton Research Center

Individual Parental Organ Weights

Printed: 04-Mar-04 Page: 2 Version 4.2.2

Page 580

Animal Group/	Terminal		Brain		Kidneys		Lungs
No/sex Subgroup H	Body wt. (g)	Adrenal Glands		Heart	-	Liver	-
Standard deviation:	25.5	0.0147	0.0910	0.1055	0.2631	0.8760	0.1469
Number of observ. :	(12)	(12)	(12)	(12)	(12)	(12)	(12)
4542/F 4/1	262.2	0.1023	2.0028	0.8973	2.3139	11.4637	1.6062
4543/F 4/1	341.6	0.1028	2.2928	1.1958	2.9335	15.0995	1.6108
4544/F 4/1	287.4	0.0784	1.8916	0.9623	2.2316	11.8204	1.4746
4545/F 4/1	287.6	0.1049	2.1318	1.1135	2.4349	13.3428	1.6562
4546/F 4/1	271.0	0.1066	1.9337	0.9451	2.3410	12.8819	1.7430
4547/F 4/1	285.6	0.1127	2.0569	1.2265	2.7011	13.7604	1.7340
4548/F 4/1	317.0	0.0922	2.0435	0.9080	2.7394	13.2664	1.6686
4549/F 4/1	293.7	0.1005	2.0490	1.1058	2.9960	11.6378	1.6210
4550/F 4/1	279.4	0.0838	1.9514	0.9837	2.3198	10.7240	1.4857
4551/F 4/1	296.4	0.0936	1.9318	1.1465	2.5437	14.6897	1.4607
4552/F 4/1	291.9	0.0852	2.1951	0.9682	2.8065	12.3566	1.6717
4553/F 4/1	274.8	0.0953	2.0922	1.1673	2.8288	12.3774	1.5225
Mean:	290.7	0.0965	2.0477	1.0517	2.5992	12.7851	1.6046
Standard deviation:	21.2	0.0103	0.1180	0.1190	0.2674	1.3170	0.0981
Number of observ. :	(12)	(12)	(12)	(12)	(12)	(12)	(12)

Summary statistics for absolute organ weights (g) Study number: 034242

Printed: 04-Mar-04 Page: 3 Version 4.2.2

Page 581

Princeton Research Center East Millstone, New Jersey Individual Parental Organ Weights

Huntingdon Life Sciences

Animal Group/	Terminal		Ovary Right		Thymus		
No/sex Subgrou	ip Body wt. (g)	Ovary Left		Spleen	Uterv	s w/vagina	
			Female		s		
1542/F 1/1	294.0	0.0784	0.0743	0.6775	0.2427	1.2206	
1543/F 1/1		0.0937	0.0985	0.5620	0.3102	1.1654	
1544/F 1/1		0.0660	0.0722	0.5240	0.2101	1.2201	
1545/F 1/1	250.4	0.0626	0.0694	0.5240 0.4845	0.2249	1.0161	
1546/F 1/1	272.3	0.0639	0.0869	0.8326	0.3660	1.3020	
1547/F 1/1		0.0797	0.0813	0.6179	0.1627	1.5545	
1548/F 1/1	325.3	0.0779	0.0636	0.8292	0.3617	0.9904	
1549/F 1/1		0.0744	0.0601	0.7126	0.2152	1.2509	
1550/F 1/1		0.0673	0.0751	0.5099	0.2848	1.0320	
1551/F 1/1		0.0803	0.0937	0.5117	0.1984	1.1256	
1552/F 1/1		0.0869	0.0701	0.6454	0.2429	1.0853	
1553/F 1/1		0.0537	0.0409	0.5964	0.2631	1.1360	
Mea		0.0737	0.0738	0.6253	0.2569	1.1749	
Standard deviation		0.0113	0.0155	0.1193	0.0634	0.1543	
Number of observ.		(12)	(12)	(12)	(12)	(12)	
2542/F 2/1	326.5	0.0795	0.0909	0.7750 0.6249	0.2929	1.1879	
2543/F 2/1		0.0670	0.1037	0.6249	0.1817	1.1026	
2544/F 2/1		0.0946	0.0831	0.6354	0.1727	1.1030	
2545/F 2/1		0.0734	0.0739	0.6729	0.2794	1.0666	
2546/F 2/1		0.0709	0.0772	0.7403	0.2449	0.9061	
2547/F 2/1		0.0939	0.0920	0.7057	0.2899	1.1531	
2548/F 2/1		0.0713	0.0736	0.7504	0.3285	1.1192	
2549/F 2/1		0.0738	0.0766	0.6360	0.2625	1.2039	
2550/F 2/1		0.0674	0.0972	0.7977	0.3496	1.1914	
2551/F 2/1		0.0700	0.0918	0.7172	0.2866	1.4246	
2552/F 2/1		0.0681	0.0581	0.7343	0.3211	1.1030	
2553/F 2/1		0.0639	0.0829	0.7801	0.4120	1.4130	
· · · · · · · · · · · · · · · · · · ·	n: 290.8	0,0745	0.0834	0.7142	0.2852	1.1645	
Standard deviation		0.0100	0.0125	0.0599	0.0668	0.1421	
Number of observ.	: (12)	(12)	(12)	(12)	(12)	(12)	
3542/F 3/1	281.7	0.0746	0.0935	0.6358	0.2424	1.2481	
3543/F 3/1		0.0821	0.0969	0.7750	0.3543	1.3563	
3544/F 3/1		0.0819	0.1305	0.7523	0.2923	1.8441	
3545/F 3/1		0.0890	0.0736	0.6371	0.3309	1.4467	
3546/F 3/1		0.0736	0.0979	0.6706	0.3940	1.2068	
3547/F 3/1		0.0831		0.6254	0.3230	1.0670	
3548/F 3/1		0.0703	0.0892	0.5901	0.2324	1.2890	
3549/F 3/1		0.0945	0.0825	0.7153	0.3578	1.1951	
3550/F 3/1		0.0651	0.0825 0.0933	0.9294	0.4638	1.3986	
3551/F 3/1		0.0745	0.0876 0.0888 0.0938	0.6374	0.2595	1.3613	
3552/F 3/1		0.0645	0.0888	0.7554	0.3718	1.2601	
3553/F 3/1	354.9	0.0964	0.0938 0.0914	0.8245 0.7124	0.3326	1.2976	
Mea		0.0791	0.0914	0.7124	0.3296	1.3309	

Summary statistics for absolute organ weights (g) Study number: 034242

East Millstone, New Jersey

Huntingdon Life Sciences

Princeton Research Center

Individual Parental Organ Weights

Page: 4 Version 4.2.2

Animal Group/	Terminal	C	vary Right		Thymus		
No/sex Subgroup Bo	dy wt. (g)	Ovary Left		Spleen	Uteru	s w/vagina .	
Standard deviation:	25.5	0.0106	0.0152	0.0993	0.0666	0.1910	
Number of observ. :	(12)	(12)	(12)	(12)	(12)	(12)	
4542/F 4/1	262.2	0.0726	0.0795	0.4830	0.3412	1.2500	
4543/F 4/1	341.6	0.0965	0.0913	0.5839	0.2920	1.0645	
4544/F 4/1	287.4	0.0689	0.0844	0.7227	0.3432	1.1018	
4545/F 4/1	287.6	0.0686	0.0822	0.9053	0.2727	1.2379	
4546/F 4/1	271.0	0.0678	0.0835	0.6847	0.3501	1.4936	
4547/F 4/1	285.6	0.0870	0.0811	0.6705	0.3030	1.6158	
4548/F 4/1	317.0	0.0748	0.0695	0.8115	0.3296	1.1462	
4549/F 4/1	293.7	0.0758	0.0776	0.7415	0.3049	1.2978	
4550/F 4/1	279.4	0.0710	0.0724	0.6668	0.2102	1.1905	
4551/F 4/1	296.4	0.0724	0.0755	0.7541	0.3003	1.2246	
4552/F 4/1	291.9	0.0882	0.0667	0.5838	0.2970	0.9179	
4553/F 4/1	274.8	0.1515	0.0779	0.6369	0.2366	1.2299	
Mean:	290.7	0.0829	0.0785	0.6871	0.2984	1.2309	
Standard deviation:	21.2	0.0234	0.0068	0.1120	0.0425	0.1842	
Number of observ. :	(12)	(12)	(12)	(12)	(12)	(12)	

Page 582 Printed: 04-Mar-04

Summary Statistics for % Organ to Body Weight Study number: 034242

East Millstone, New Jersey
Individual Parental Organ Weights

Huntingdon Life Sciences

Princeton Research Center

Printed: 04-Mar-04 Page: 1 Version 4.2.2

	Terminal		Brain		Kidneys		Lungs
No/sex Subgroup Bo	ody wt. (g)	Adrenal Glands		Heart		Liver	
			Female	Animal			
1542/F 1/1	294.0	0.0341	0.6737	0.3678	0.9009	4.2304	0.4800
1543/F 1/1	275.8	0.0446	0.7430	0.3823	0.9443	4.6603	0.5719
1544/F 1/1	288.3	0.0315	0.7048	0.3658	0.7953	4.4313	0.5047
1545/F 1/1	250.4	0.0253	0.8623	0.3222	1.0341	4.9092	0.6331
1546/F 1/1	272.3	0.0344	0.8622	0.3531	1.0170	4.6441	0.6317
1547/F 1/1	289.4	0.0423	0.7023	0.3349	0.9088	4.6774	0.5016
1548/F 1/1	325.3	0.0311	0.7441	0.3595	0.9555	5.0128	0.5268
1549/F 1/1	259.2	0.0352	0.8594	0.3610	1.1002	4.8624	0.6707
1550/F 1/1	257.7	0.0346	0.7703	0.3555	0.8837	4.1374	0.5316
1551/F 1/1	270.4	0.0386	0.7561	0.3272	0.9134	4.5395	0.5915
1552/F 1/1	300.0	0.0305	0.7021	0.3542	0.8049	4.3432	0.4886
1553/F 1/1	309.4	0.0158	0.6916	0.3612	0.8836	4.8623	0.5939
Mean:	282.7	0.0332	0.7560	0.3537	0.9285	4.6092	0.5605
Standard deviation:	22.5	0.0076	0.0695	0.0175	0.0894	0.2801	0.0639
Number of observ. :	(12)	(12)	(12)	(12)	(12)	(12)	(12)
2542/F 2/1	326.5	0.0288	0.6609	0.3237	0.8054	4.1549	0.4864
2543/F 2/1	308.2	0.0239	0.6584	0.3531	0.7739	4.4320	0.4852
2544/F 2/1	280.1	0.0298	0.7613	0.3340	0.7946	4.6515	0.4321
2545/F 2/1	255.1	0.0385	0.8361	0.3369	1.0048	4.5334	0.5476
2546/F 2/1	280.1	0.0309	0.7215	0.3133	0.8099	5.2749	0.5071
2547/F 2/1	306.0	0.0282	0.6666	0.3727	0.8600	4.4668	0.4973
2548/F 2/1	283.6	0.0357	0.7517	0.3815	0.8371	4.1802	0.595]
2549/F 2/1	266.7	0.0330	0.7610	0.3517	1.0683	4.5459	0.5674
2550/F 2/1	283.2	0.0339	0.8090	0.3530	0.9796	4.8771	0.632
2551/F 2/1	309.7	0.0266	0.7084	0.3329	0.9318	4.0737	0.5579
2552/F 2/1	304.0	0.0305	0.7343	0.3408	0.9411	4.8541	0.5542
2553/F 2/1	286.1	0.0279	0.7336	0.3282	0.9987	4.2403	0.5194
Mean:	290.8	0.0306	0.7336	0.3435	0.9004	4.5237	0.5318
Standard deviation:	20.4	0.0041	0.0558	0.0199	0.0990	0.3521	0.0547
Number of observ. :	(12)	(12)	(12)	(12)	(12)	(12)	(12)
3542/F 3/1	281.7	0.0471	0.7756	0.4078	0.9880	4.8702	0.5560
3543/F 3/1	302.0	0.0299	0.6644	0.3386	0.9356	4.1661	0.5092
3544/F 3/1	273.1	0.0390	0.7786	0.3468	0.9516	4.5922	0.4912
3545/F 3/1	283.6	0.0399	0.7125	0.3982	0.7829	4.2851	0.5020
3546/F 3/1	305.2	0.0267	0.7082	0.3523	0.9052	4.3987	0.5352
3547/F 3/1	260.5	0.0456	0.7924	0.3780	0.9463	4.7693	0.5491
3548/F 3/1	283.4	0.0347	0.6809	0.3526	0.8218	4.2569	0.5095
3549/F 3/1	306.3	0.0321	0.7229	0.3477	0.9539	4.1259	0.5710
3550/F 3/1	321.9	0.0259	0.6669	0.3355	0.9581	4.1300	0.4454
3551/F 3/1	291.6	0.0370	0.6862	0.3526	0.9132	4.4533	0.5059
3552/F 3/1	273.5	0.0399	0.7945	0.3237	0.9667	4.4388	0.5935
3553/F 3/1	354.9	0.0278	0.6093	0.3644	0.8504	4.2635	0.5174
Mean:	294.8	0.0355	0.7160	0.3582	0.9145	4.3958	0.5238

Page 583

Summary Statistics for % Organ to Body Weight Study number: 034242

Page: 2 Version 4.2.2

Page 584

Printed: 04-Mar-04

Individual Parental Organ Weights

Huntingdon Life Sciences Princeton Research Center

East Millstone, New Jersey

Animal Group/	Terminal		Brain		Kidneys		Lungs
No/sex Subgroup Bo	dy wt. (g)	Adrenal Glands		Heart		Liver	
Standard deviation:	25.5	0.0071	0.0589	0.0251	0.0636	0.2438	0.0397
Number of observ. :	(12)	(12)	(12)	(12)	(12)	(12)	(12)
4542/F 4/1	262.2	0.0390	0.7638	0.3422	0.8825	4.3721	0.6126
4543/F 4/1	341.6	0.0301	0.6712	0.3501	0.8588	4.4202	0.4715
4544/F 4/1	287.4	0.0273	0.6582	0.3348	0.7765	4.1129	0.5131
4545/F 4/1	287.6	0.0365	0.7412	0.3872	0.8466	4.6394	0.5759
4546/F 4/1	271.0	0.0393	0.7135	0.3487	0.8638	4.7535	0.6432
4547/F 4/1	285.6	0.0395	0.7202	0.4294	0.9458	4.8181	0.6071
4548/F 4/1	317.0	0.0291	0.6446	0.2864	0.8642	4.1850	0.5264
4549/F 4/1	293.7	0.0342	0.6977	0.3765	1.0201	3.9625	0.5519
4550/F 4/1	279.4	0.0300	0.6984	0.3521	0.8303	3.8382	0.5317
4551/F 4/1	296.4	0.0316	0.6518	0.3868	0.8582	4.9560	0.4928
4552/F 4/1	291.9	0.0292	0.7520	0.3317	0.9615	4.2332	0.5727
4553/F 4/1	274.8	0.0347	0.7614	0.4248	1.0294	4.5041	0.5540
Mean:	290.7	0.0334	0.7062	0.3626	0.8948	4.3996	0.5544
Standard deviation:	21.2	0.0044	0.0430	0.0406	0.0775	0.3493	0.0509
Number of observ. :	(12)	(12)	(12)	(12)	(12)	(12)	(12)

,

Huntingdon Life Sciences

Princeton Research Center

East Millstone, New Jersey

306.3

321.9

291.6

273.5

354.9

294.8

3549/F

3550/F

3551/F

3552/F

3553/F 3/1

3/1

3/1

3/1

3/1

Mean:

0.0309

0.0202

0.0255

0.0236

0.0272

0.0269

Summary Statistics for % Organ to Body Weight
Study number: 034242

Study number: 034242 Page: 3
Version 4.2.2

Individual Parental Organ Weights Animal Group/ Terminal Ovary Right Thymus No/sex Subgroup Body wt. (q) Uterus w/vagina Ovary Left Spleen ______ Female Animals 1542/F 1/1 294.0 0.0267 0.0253 0.2304 0.0826 0.4152 1543/F 1/1 275.8 0.0340 0.0357 0.2038 0.1125 0.4226 1544/F 1/1 288.3 0.0229 0.0250 0.1818 0.0729 0.4232 1545/F 1/1 250.4 0.0250 0.0277 0.1935 0.0898 0.4058 1546/F 1/1 272.3 0.0235 0.0319 0.3058 0.1344 0.4781 1547/F 1/1 289.4 0.0275 0.0281 0.2135 0.0562 0.5371 1548/F 1/1 325.3 0.0239 0.0196 0.2549 0.1112 0.3045 1549/F 1/1 259.2 0.0287 0.0232 0.2749 0.0830 0.4826 1550/F 1/1 257.7 0.0261 0.0291 0.1979 0.1105 0.4005 1551/F 1/1 270.4 0.0297 0.0347 0.1892 0.0734 0.4163 1552/F 1/1 300.0 0.0290 0.0234 0.2151 0.0810 0.3618 1553/F 1/1 309.4 0.1928 0.0174 0.0132 0.0850 0.3672 282.7 0.0262 0.0264 0.2211 0.0910 Mean: 0.4179 Standard deviation: 22.5 0.0042 0.0063 0.0386 0.0219 0.0612 Number of observ. : (12) (12) (12) (12) (12) (12) 2542/F 2/1 326.5 0.0243 0.0278 0.2374 0.0897 0.3638 2543/F 2/1 308.2 0.0217 0.0336 0.2028 0.0590 0.3578 2544/F 2/1 280.1 0.0338 0.0297 0.2268 0.0617 0.3938 2545/F 2/1 255.1 0.0288 0.0290 0.2638 0.1095 0.4181 2546/F 2/1 280.1 0.0253 0.0276 0.2643 0.0874 0.3235 2547/F 2/1 306.0 0.0301 0.0307 0.2306 0.0947 0.3768 2548/F 2/1 283.6 0.0251 0.0260 0.2646 0.1158 0.3946 2549/F 2/1 266.7 0.0277 0.0287 0.2385 0.0984 0.4514 2550/F 2/1 283.2 0.0238 0.0343 0.2817 0.1234 0.4207 2551/F 2/1 309.7 0.0226 0.0296 0.2316 0.0925 0.4600 2552/F 2/1 304.0 0.0224 0.0191 0.2415 0.1056 0.3628 2553/F 2/1 286.1 0.0223 0.2727 0.0290 0.1440 0.4939 Mean: 290.8 0.0257 0.0287 0.2464 0.0985 0.4014 Standard deviation: 20.4 0.0038 0.0038 0.0230 0.0240 0.0493 Number of observ. : (12) (12) (12) (12) (12) (12) 3542/F 3/1 281.7 0.0265 0.0332 0.2257 0.0860 0.4431 3543/F 3/1 302.0 0.0272 0.0321 0.2566 0.1173 0.4491 3544/F 3/1 273.1 0.0300 0.0478 0.2755 0.1070 0.6752 3545/F 3/1 283.6 0.0314 0.0260 0.2246 0.1167 0.5101 3546/F 3/1 305.2 0.0241 0.0321 0.2197 0.1291 0.3954 3547/F 3/1 260.5 0.0319 0.0342 0.1240 0.2401 0.4096 3548/F 3/1 283.4 0.0248 0.0243 0.2082 0.0820 0.4548

0.0269

0.0290

0.0300

0.0325

0.0264

0.0312

0.2335

0.2887

0.2186

0.2762

0.2323

0.2417

0.1168

0.1441

0.0890

0.1359

0.0937

0.1118

0.3902

0.4345

0.4668

0.4607

0.3656

0.4546

Page 585 Printed: 04-Mar-04

Summary Statistics for % Organ to Body Weight Study number: 034242

Page: 4 Version 4.2.2

Page 586

Printed: 04-Mar-04

East Millstone, New Jersey
Individual Parental Organ Weights

Huntingdon Life Sciences

Princeton Research Center

Animal Group/	Terminal	C	vary Right		Thymus		
No/sex Subgroup Bo	ody wt. (g)	Ovary Left		Spleen	Uteru	ıs w/vagina	
Standard deviation:	25.5	0.0036	0.0061	0.0263	0.0204	0.0798	4
Number of observ. :	(12)	(12)	(12)	(12)	(12)	(12)	
4542/F 4/1	262.2	0.0277	0.0303	0.1842	0.1301	0.4767	
4543/F 4/1	341.6	0.0282	0.0267	0.1709	0.0855	0.3116	
4544/F 4/1	287.4	0.0240	0.0294	0.2515	0.1194	0.3834	
4545/F 4/1	287.6	0.0239	0.0286	0.3148	0.0948	0.4304	
4546/F 4/1	271.0	0.0250	0.0308	0.2527	0.1292	0.5511	
4547/F 4/1	285.6	0.0305	0.0284	0.2348	0.1061	0.5658	
4548/F 4/1	317.0	0.0236	0.0219	0.2560	0.1040	0.3616	
4549/F 4/1	293.7	0.0258	0.0264	0.2525	0.1038	0.4419	
4550/F 4/1	279.4	0.0254	0.0259	0.2387	0.0752	0.4261	
4551/F 4/1	296.4	0.0244	0.0255	0.2544	0.1013	0.4132	
4552/F 4/1	291.9	0.0302	0.0229	0.2000	0.1017	0.3145	
4553/F 4/1	274.8	0.0551	0.0283	0.2318	0.0861	0.4476	
Mean:	290.7	0.0287	0.0271	0.2368	0.1031	0.4270	
Standard deviation:	21.2	0.0087	0.0028	0.0381	0.0169	0.0799	
Number of observ. :	(12)	(12)	(12)	(12)	(12)	(12)	

.

7

Huntingdon Life Sciences

3552/F

3553/F 3/1

3/1

Mean:

273.5

354.9

294.8

5.0207

4.5692

4.9259

Princeton Research Center

East Millstone. New Jersev

Summary Statistics for % Organ to Brain Weight
Study number: 034242

Study number: 034242 Page: 1
Version 4.2.2

121.6705

139.5782

128.1809

40.7363

59.8021

50.2944

558.6838

699.7734

615.9839

74.6940

84.9235

73.3904

Individual Parental Organ Weights Lungs Kidnevs Animal Group/ Terminal Brain Liver No/sex Subgroup Body wt. (q) Adrenal Glands Heart Animals Female 627.9562 71.2461 100.0000 54.5946 133.7322 1542/F 1/1 294.0 5.0591 627,2302 1543/F 1/1 275.8 6.0072 100.0000 51.4493 127.0984 76.9666 628.7156 71.6043 4.4734 100.0000 51.8996 112.8396 1544/F 1/1 288.3 250.4 2.9315 100.0000 37.3593 119.9185 569.2910 73.4173 1545/F 1/1 100.0000 40.9558 117.9480 538,6090 73.2570 1546/F 1/1 272.3 3.9865 100.0000 129.3909 665.9697 71.4110 1547/F 1/1 289.4 6.0169 47.6779 128.4074 673.6832 70.7994 1548/F 4.1768 100.0000 48.3165 1/1 325.3 565.7794 78.0391 100.0000 42.0048 128.0122 1549/F 1/1 259.2 4.0941 1550/F 257.7 4.4887 100.0000 46.1511 114.7204 537.1386 69.0126 1/1 120.8130 600.4109 78.2381 43.2792 1551/F 1/1 270.4 5.1017 100.0000 69.5912 618.5966 1552/F 1/1 300.0 4.3394 100.0000 50.4487 114.6418 85.8638 1553/F 1/1 309.4 2.2805 100.0000 52.2314 127.7536 703.0189 122.9397 613.0333 74.1206 4.4130 100.0000 47.1973 Mean: 282.7 0.0000 5.3211 6.9491 52.9870 4.8535 1.0914 Standard deviation: 22.5 (12) (12) (12) Number of observ. : (12) (12) (12) (12) 121.8695 628.6774 73.6027 100,0000 48.9758 2542/F 2/1 326.5 4.3609 100.0000 53.6320 117.5439 673.1372 73.6891 2543/F 2/1 308.2 3.6320 43.8640 104.3658 610.9684 56.7503 2544/F 2/1 280.1 3.9109 100.0000 65.4883 2545/F 2/1 255.1 4.6041 100.0000 40.2972 120.1791 542.2102 112.2520 731.1050 70.2855 100.0000 43.4212 2546/F 2/1 280.1 4.2852 4.2257 100.0000 55.9096 129.0112 670.0475 74.5919 2547/F 2/1 306.0 111.3665 556.1336 79.1669 100.0000 50.7576 2548/F 4.7521 2/1 283.6 597.3542 74.5615 2549/F 266.7 4.3309 100.0000 46.2160 140.3774 2/1 4.1903 100.0000 43.6403 121.0956 602.8809 78.1362 2550/F 2/1 283.2 131.5480 575.0798 78.7583 100.0000 46.9961 2551/F 2/1 309.7 3.7606 128.1606 661.0789 75.4816 4.1529 100.0000 46.4161 2552/F 2/1 304.0 2553/F 2/1 286.1 3.8071 100,0000 44.7420 136.1462 578.0436 70.8057 100.0000 47.0723 122.8263 618.8931 72.6098 4.1677 Mean: 290.8 55.7727 6.3272 4.5351 10.6643 Standard deviation: 0.3388 0.0000 20.4 Number of observ. : (12) (12)(12)(12)(12)(12) 627.9144 71.6829 100.0000 52.5791 127.3834 6.0689 3542/F 3/1 281.7 627.0372 76.6459 140.8124 3543/F 3/1 302.0 4.5004 100.0000 50.9594 5.0087 100.0000 44.5422 122.2217 589.8227 63.0955 3544/F 3/1 273.1 109.8832 601.4352 70.4543 5.6023 100,0000 55.8943 3545/F 3/1 283.6 100.0000 49.7455 127.8153 621,1160 75.5668 3546/F 3/1 305.2 3.7753 100.0000 47.7037 119.4167 601.8749 69.3005 3547/F 3/1 260.5 5.7553 74.8212 120.6861 625.1478 3548/F 283.4 5.0886 100.0000 51.7826 3/1 131.9588 570.7737 78.9937 100.0000 48.0963 3549/F 3/1 306.3 4.4397 619.2948 66.7816 3550/F 3.8850 100.0000 50.3098 143.6670 3/1 321.9 133.0768 648.9331 73.7244 100.0000 51.3817 3551/F 3/1 291.6 5.3970

100.0000

100.0000

100.0000

Page 587
Printed: 04-Mar-04

Huntingdon Life Sciences Princeton Research Center Summary Statistics for % Organ to Brain Weight Study number: 034242

Printed: 04-Mar-04 Page: 2

Page 588

East Millstone, New Jersey Individual Parental Organ		scuay num	per: 034242			ersion 4.2.2
Animal Group/ Termin		Brain		Kidneys		Lungs
No/sex Subgroup Body wt			Heart		Liver	
Standard deviation: 29	5.5 0.7178	0.0000	4.9277	10.0633	36.8221	5.7329
Number of observ. : (12) (12)	(12)	(12)	(12)	(12)	(12)
4542/F 4/1 263	2.2 5.1078	100.0000	44.8023	115.5333	572.3837	80.1977
4543/F 4/1 34:	1.6 4.4836	100.0000	52.1546	127.9440	658.5616	70.2547
4544/F 4/1 28°	7.4 4.1446	100.0000	50.8723	117.9742	624.8890	77.9552
4545/F 4/1 28°	7.6 4.9207	100.0000	52.2329	114.2180	625.8937	77.6902
4546/F 4/1 27:	1.0 5.5127	100.0000	48.8752	121.0633	666.1789	90.1381
4547/F 4/1 28!	5.6 5.4791	100.0000	59.6286	131.3190	668.9873	84.3016
4548/F 4/1 31°	7.0 4.5119	100.0000	44.4336	134.0543	649.2000	81.6540
4549/F 4/1 293	3.7 4.9048	100.0000	53.9678	146.2177	567.9747	79.1118
4550/F 4/1 275	9.4 4.2944	100.0000	50.4100	118.8788	549.5542	76.1351
4551/F 4/1 29	6.4 4.8452	100.0000	59.3488	131.6751	760.4152	75.6134
4552/F 4/1 29:	1.9 3.8814	100.0000	44.1073	127.8529	562.9174	76.1560
4553/F 4/1 274	4.8 4.5550	100.0000	55.7929	135.2070	591.5974	72.7703
Mean: 29	0.7 4.7201	100.0000	51.3855	126.8281	624.8795	78.4982
Standard deviation: 2:	1.2 0.5034	0.0000	5.3165	9.5620	60.5752	5.2527
Number of observ. : (:	12) (12)	(12)	(12)	(12)	(12)	(12)

Huntingdon Life Sciences

3551/F

3552/F

3553/F 3/1

3/1

3/1

Mean:

291.6

273.5

354.9

294.8

Princeton Research Center

East Millstone, New Jersev

Summary Statistics for % Organ to Brain Weight

Study number: 034242

Individual Parental Organ Weights Animal Group/ Terminal Ovary Right Thymus No/sex Subgroup Body wt. (a) Ovary Left Spleen Uterus w/vagina Female Animals 1542/F 1/1 294.0 3.9584 3.7514 34.2068 12.2539 61.6278 1543/F 1/1 275.8 4.5725 4.8068 27.4253 15.1376 56.8710 1544/F 1/1 288.3 3.2480 3.5531 25.7874 10.3396 60.0443 1545/F 1/1 250.4 2.8991 3.2140 22.4378 10.4154 47.0569 1546/F 1/1 272.3 2.7216 3.7012 35.4615 15.5884 55.4538 1547/F 1/1 289.4 3.9211 3.9998 30.3995 8.0045 76.4784 1548/F 1/1 325.3 3.2183 2.6276 34.2574 14.9432 40,9172 1549/F 1/1 259.2 3.3399 2.6980 31.9896 9.6606 56.1546 1550/F 1/1 257.7 3.3904 3.7834 25.6877 14.3476 51.9899 1551/F 1/1 270.4 3.9278 4.5833 25.0294 9.7046 55.0577 1552/F 1/1 300.0 4.1257 3.3281 30.6414 11.5321 51.5264 1553/F 1/1 309.4 2.5095 1.9113 27.8705 12,2950 53.0866 Mean: 282.7 3.4860 3.4965 29.2662 12.0185 55.5220 Standard deviation: 22.5 0.6207 0.8178 4.1900 2.5088 8.6270 Number of observ. : (12) (12) (12) (12) (12) 2542/F 2/1 326.5 3.6843 4.2126 35.9162 13.5740 55.0514 2543/F 2/1 308.2 3.3018 5.1104 30.7954 8.9543 54.3367 2544/F 2/1 280.1 4.4361 3.8968 29.7960 8.0985 51.7233 2545/F 2/1 255.1 3.4413 3.4648 31.5486 13.0995 50.0070 2546/F 2/1 280.1 3.5083 3.8201 36.6322 12.1184 44.8365 2547/F 2/1 306.0 4.6032 4.5100 34.5948 14.2115 56.5273 2548/F 2/1 283.6 3.3447 3.4526 35.2020 15.4102 52.5027 2549/F 2/1 266.7 3.6362 3.7741 31.3362 12.9336 59.3171 2550/F 2/1 283.2 2.9419 4.2427 34.8189 15.2597 52.0035 2551/F 2/1 309.7 3.1908 4.1845 32.6921 13.0641 64.9376 2552/F 2/1 304.0 3.0508 2.6028 32.8958 14.3849 49.4131 2553/F 2/1 286.1 3.0447 3.9501 37.1706 19.6312 67.3274 Mean: 290.8 3.5154 3.9351 33,6166 13.3950 54.8320 Standard deviation: 20.4 0.5245 0.6191 2.4371 2.9836 6.4469 Number of observ. : (12) (12) (12) (12) (12)(12) 3542/F 3/1 281.7 3.4143 4.2794 29.0997 11.0943 57.1239 3543/F 3/1 302.0 4.0917 4.8293 38.6245 17.6576 67.5953 3544/F 3/1 273.1 3.8518 6.1374 35.3807 13.7469 86.7281 3545/F 3/1 283.6 4.4046 3.6425 31.5302 16.3763 71.5975 3546/F 3/1 305.2 3.4052 4.5295 31.0262 18.2289 55.8342 3547/F 3/1 260.5 4.0258 4.3213 30.2975 15.6477 51.6907 3548/F 3/1 283.4 3.6429 3.5651 30.5783 12.0427 66.7945 3549/F 3/1 306.3 4.2681 3.7261 32.3066 16.1601 53.9768 3550/F 3/1 321.9 3,0326

4.3462

4.3776

4.0865

4.3380

4.3482

3.7230

2.9682

4.4582

3.7739

43.2944

31.8525

34.7630

38.1307

33.9070

21.6053

12.9679

17.1100

15.3818

15.6683

65.1512

68.0276

57.9890

60,0102

63.5432

Page 589

Printed: 04-Mar-04

Version 4.2.2

Page: 3

Summary Statistics for % Organ to Brain Weight Study number: 034242

Printed: 04-Mar-04 Page: 4 Version 4.2.2

Page 590

Huntingdon Life Sciences Princeton Research Center East Millstone, New Jersey Individual Parental Organ Weights

Animal Group/	Terminal	C	vary Right		Thymus		
No/sex Subgroup Bo	dy wt. (g)	Ovary Left		Spleen	Uter	us w/vagina	
Standard deviation:	25.5	0.5013	0.6768	4.2541	2.9188	9.6675	
Number of observ. :	(12)	(12)	(12)	(12)	(12)	(12)	
4542/F 4/1	262.2	3.6249	3.9694	24.1162	17.0361	62.4126	
4543/F 4/1	341.6	4.2088	3.9820	25.4667	12.7355	46.4280	
4544/F 4/1	287.4	3.6424	4.4618	38.2058	18.1434	58.2470	
4545/F 4/1	287.6	3.2179	3.8559	42.4665	12.7920	58.0683	
4546/F 4/l	271.0	3.5062	4.3181	35.4088	18.1052	77.2405	
4547/F 4/1	285.6	4.2297	3.9428	32.5976	14.7309	78.5551	
4548/F 4/1	317.0	3.6604	3.4010	39.7113	16.1292	56.0900	
4549/F 4/1	293.7	3.6994	3.7872	36.1884	14.8804	63.3382	
4550/F 4/1	279.4	3.6384	3.7102	34.1703	10.7718	61.0075	
4551/F 4/1	296.4	3.7478	3.9083	39.0361	15.5451	63.3917	
4552/F 4/1	291.9	4.0180	3.0386	26.5956	13.5301	41.8159	
4553/F 4/1	274.8	7.2412	3.7234	30.4416	11.3087	58.7850	
Mean:	290.7	4.0363	3.8416	33.7004	14.6424	60.4483	
Standard deviation:	21.2	1.0493	0.3737	5.9775	2.4764	10.4752	
Number of observ. :	(12)	(12)	(12)	(12)	(12)	(12)	

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX FF

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

'EMALE#		OBSERVATIONS		DAY OF LACTATION				9 0	1	3 4	5	6	7	8	9 (1		
1542 PUP#	2	WITHIN NORMAL	LIMITS		P	 P	 	 		 						- - -	 	
PUP#	3	WITHIN NORMAL	LIMITS		P	P												
PUP#	4	WITHIN NORMAL	LIMITS		P	P												
PUP#	5	WITHIN NORMAL	LIMITS		P	P												
PUP#	6	WITHIN NORMAL	LIMITS		P	р												
PUP#	7	WITHIN NORMAL	LIMITS		P	Р												
PUP#	8	WITHIN NORMAL	LIMITS		P	P												
PUP#	9	WITHIN NORMAL	LIMITS		P	P												
PUP# 1	.0	WITHIN NORMAL	LIMITS		P													
PUP# 1	.1	WITHIN NORMAL	LIMITS		P	P												
PUP# 1	.2	WITHIN NORMAL	LIMITS		P	P												
PUP# 1	.3	WITHIN NORMAL	LIMITS		P													
PUP# 1	4	WITHIN NORMAL	LIMITS		P	P												
PUP# 1	.5	WITHIN NORMAL	LIMITS		P	₽												
PUP# 1	6	WITHIN NORMAL	LIMITS		P	Р												
PUP# 1	.7	WITHIN NORMAL	LIMITS		P	Р												
PUP# 1	8.	WITHIN NORMAL	LIMITS		P	P												
1543 PUP#	1	WITHIN NORMAL	LIMITS		P	P												
PUP#	2	WITHIN NORMAL	LIMITS		P	Ρ												
PUP#	3	WITHIN NORMAL	LIMITS		P	P												
PUP#	4	WITHIN NORMAL	LIMITS		P	Ρ												
PUP#	5	WITHIN NORMAL	LIMITS		P	P												
PUP#	6	WITHIN NORMAL	LIMITS		P	Ρ												
PUP#	7	WITHIN NORMAL	LIMITS		P	P												
PUP#		WITHIN NORMAL	LIMITS		P	₽												
PUP#	9	WITHIN NORMAL	LIMITS		P	P												
PUP# 1		WITHIN NORMAL	LIMITS		P	P												
PUP# 1		WITHIN NORMAL	LIMITS		P	P												
PUP# 1		WITHIN NORMAL	LIMITS		P	P												
PUP# 1	3	WITHIN NORMAL	LIMITS		P	P												
PUP# 1	4	WITHIN NORMAL	LIMITS		P	P												

Huntingdom Life Sciences 03-4242S SATELLITE STUDY

APPENDIX FF

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

PEMALE#	OBSERVATIONS	DAY OF LACTATION 0	1 2 3	1 1 1 1 1 1 1 1 1 2 2 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
	5 WITHIN NORMAL LIMITS	F)	P
PUP# 1	5 WITHIN NORMAL LIMITS	F	•	P
1544 PUP#	NOTHIN NORMAL LIMITS	F	,	p
PUP#	WITHIN NORMAL LIMITS	F)	P
PUP#	WITHIN NORMAL LIMITS	q)	P
PUP#	WITHIN NORMAL LIMITS	F		P
PUP#	WITHIN NORMAL LIMITS	P	,	P
PUP#	WITHIN NORMAL LIMITS	P)	P
PUP#	7 WITHIN NORMAL LIMITS	P)	
PUP#	B WITHIN NORMAL LIMITS	P	•	P
PUP#	WITHIN NORMAL LIMITS	P	•	p
PUP# 1	O WITHIN NORMAL LIMITS	p	•	P
PUP# 1	L WITHIN NORMAL LIMITS	P)	P
PUP# 1:	WITHIN NORMAL LIMITS	P	, ,	P
PUP# 1:	WITHIN NORMAL LIMITS	P	1	P
PUP# 1	WITHIN NORMAL LIMITS	P)	P
PUP# 1	WITHIN NORMAL LIMITS	P)	P
PUP# 1	WITHIN NORMAL LIMITS	P	•	P
1545 PUP# :	WITHIN NORMAL LIMITS	P	,	P
PUP# :	WITHIN NORMAL LIMITS	p	•	P
PUP# 4	WITHIN NORMAL LIMITS	P	1	P
PUP# !	WITHIN NORMAL LIMITS	P	1	P
PUP# (WITHIN NORMAL LIMITS	P	•	P
PUP# '	WITHIN NORMAL LIMITS	Р	,	p
PUP# 8	WITHIN NORMAL LIMITS	P	,	P
PUP# 9	WITHIN NORMAL LIMITS	P		P
PUP# 10	WITHIN NORMAL LIMITS	P		p .
PUP# 1:	WITHIN NORMAL LIMITS	P		P
PUP# 1:	WITHIN NORMAL LIMITS	P		P
PUP# 13	WITHIN NORMAL LIMITS	P		P

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX FF

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

									 	 			 		
FEMALE#		OBSERVATIONS		DAY OF LACTATION	0123	١ 4	5 6	7 8			111				
									 	 		, ,	 		
1546 PUP#	1	WITHIN NORMAL	LIMITS		P	Р									
· PUP#	2	WITHIN NORMAL	LIMITS		P	P									
PUP#	3	WITHIN NORMAL	LIMITS		P	P									
,		WITHIN NORMAL			P	P									
		WITHIN NORMAL			P	P									
• •		WITHIN NORMAL			P	P									
	7	WITHIN NORMAL	LIMITS		P	P									
PUP#	8	WITHIN NORMAL	LIMITS		P	P									
- "		WITHIN NORMAL			P	P									
PUP# 1		WITHIN NORMAL			P	P									
PUP# 1		WITHIN NORMAL			P	₽									
PUP# 1		WITHIN NORMAL			P	₽									
PUP# 1		WITHIN NORMAL			P	P									
PUP# 1	L 4	WITHIN NORMAL	LIMITS		P	P									
1547 PUP#	1	WITHIN NORMAL	LIMITS		P	P									
		WITHIN NORMAL			P	P									
		WITHIN NORMAL			p p	P									
PUP#	4	WITHIN NORMAL	LIMITS		P	P									
PUP#	5	WITHIN NORMAL	LIMITS		P	P									
PUP#	6	WITHIN NORMAL	LIMITS		P	P									
PUP#	7	WITHIN NORMAL	LIMITS		P	P									
PUP#	8	WITHIN NORMAL	LIMITS		P	P									
		WITHIN NORMAL			P	P									
PUP# 1	.0	WITHIN NORMAL	LIMITS		P	P									
PUP# 1	.1	WITHIN NORMAL	LIMITS		P	P									
PUP# 1		WITHIN NORMAL			P	P									
PUP# 1		WITHIN NORMAL			P	P									
PUP# 1		WITHIN NORMAL			P	P									
PUP# 1		WITHIN NORMAL			P	P									
					-	-									

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX FF

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

FEMALE#	OBSERVATIONS	DAY OF LACTATION	0 1 2 3	1 1 1 1 1 1 1 1 1 2 2 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
	WITHIN NORMAL LIMITS		Р	Р
PUP# 2	WITHIN NORMAL LIMITS		P	P
PUP# 3	WITHIN NORMAL LIMITS		P	p
PUP# 4	WITHIN NORMAL LIMITS		P	P
PUP# 5	WITHIN NORMAL LIMITS		P	P
PUP# 6	WITHIN NORMAL LIMITS		P	P
PUP# 7	WITHIN NORMAL LIMITS		P	P
PUP# 8	WITHIN NORMAL LIMITS		P	P
PUP# 9	WITHIN NORMAL LIMITS		P	P
PUP# 10	WITHIN NORMAL LIMITS		P	P .
PUP# 11	WITHIN NORMAL LIMITS		P	P
1549 PUP# 1	WITHIN NORMAL LIMITS		p	P
PUP# 2	WITHIN NORMAL LIMITS		P	P
PUP# 3	WITHIN NORMAL LIMITS		P	P
PUP# 4	WITHIN NORMAL LIMITS		P	P
PUP# 5	WITHIN NORMAL LIMITS		P	P
PUP# 6	WITHIN NORMAL LIMITS		P	P
PUP# 7	WITHIN NORMAL LIMITS		P	P
PUP# 8	WITHIN NORMAL LIMITS		P	P ,
PUP# 9	WITHIN NORMAL LIMITS		P	P
PUP# 10	WITHIN NORMAL LIMITS		P	P
PUP# 11	WITHIN NORMAL LIMITS		P	P
PUP# 12	WITHIN NORMAL LIMITS		P	P
1550 PUP# 1	WITHIN NORMAL LIMITS		P	P
PUP# 2	WITHIN NORMAL LIMITS		P	P
PUP# 3	WITHIN NORMAL LIMITS		P	P
PUP# 4	WITHIN NORMAL LIMITS		P	P
PUP# 5	WITHIN NORMAL LIMITS		P	p
PUP# 6	WITHIN NORMAL LIMITS		P	P P
PUP# 7	WITHIN NORMAL LIMITS		P P	P

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX FF

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GEOLID	7	^	DDM

FEMALE#		OBSERVATIONS		DAY OF LACTATION	0 1 2 3	3 4	4 5	5 6	7	8 9				7 8				
1550 PUP#	8	WITHIN NORMAL	LIMITS		P	I	 P				 -	 	 		 	 	 	
PUP#	9	WITHIN NORMAL	LIMITS		P	I	P											
PUP# 1	0	WITHIN NORMAL	LIMITS		P	Ī	₽											
PUP# 1	1	WITHIN NORMAL	LIMITS		P	I	P											
PUP# 1	2	WITHIN NORMAL	LIMITS		P	I	Ρ											
		WITHIN NORMAL			P	Į												
		WITHIN NORMAL			P	I												
,		WITHIN NORMAL			P	Ι												
		WITHIN NORMAL			P	I												
		WITHIN NORMAL	·		P	F												
		WITHIN NORMAL			P	Ε												
		WITHIN NORMAL			P	E												
••		WITHIN NORMAL			P	E												
		WITHIN NORMAL			P	E												
PUP# 1	-	WITHIN NORMAL			P	E												
PUP# 1:		WITHIN NORMAL			P	F												
PUP# 1:		WITHIN NORMAL			P	F												
PUP# 1:		WITHIN NORMAL			P	F												
PUP# 14	4	WITHIN NORMAL	LIMITS	•	P	E	?											
1552 PUP#		WITHIN NORMAL			P	E												
		WITHIN NORMAL			P	P												
		WITHIN NORMAL			P	E												
==		WITHIN NORMAL			P	F												
		WITHIN NORMAL			P	F												
·· ·		WITHIN NORMAL			P	F												
		WITHIN NORMAL			P	F												
		WITHIN NORMAL			P	Ę												
		WITHIN NORMAL			P	F												
PUP# 10		WITHIN NORMAL			P	F												
PUP# 1:	1	WITHIN NORMAL	LIMITS		P	P	>											

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX FF

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

FEMALE#		DAY OF LACTATION 0 1 2	1 1 1 1 1 1 1 1 1 2 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1552 PUP# 12	WITHIN NORMAL LIMITS	P	P
PUP# 13	WITHIN NORMAL LIMITS	P	P
1553 PUP# 1	WITHIN NORMAL LIMITS	p	P
PUP# 2	WITHIN NORMAL LIMITS	P	P
PUP# 3	WITHIN NORMAL LIMITS	P	P
PUP# 4	WITHIN NORMAL LIMITS	P	P
PUP# 5	WITHIN NORMAL LIMITS	P	P
PUP# 6	WITHIN NORMAL LIMITS	P	P
PUP# 7	WITHIN NORMAL LIMITS	P	P
PUP# 8	WITHIN NORMAL LIMITS	P	P
PUP# 9	WITHIN NORMAL LIMITS	P	P
PUP# 10	WITHIN NORMAL LIMITS	P	P
PUP# 11	WITHIN NORMAL LIMITS	P	P
PUP# 12	WITHIN NORMAL LIMITS	P	P

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX FF

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

FEMALE#		OBSERVATIONS		DAY OF LACTATION	0 1 2 3	1 1 1 1 1 1 1 1 1 2 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1	-
2542 PUP#	2	WITHIN NORMAL	LIMITS	·	P	P	
PUP#	3	WITHIN NORMAL	LIMITS		P	P .	
		WITHIN NORMAL	LIMITS		P	P	
PUP#		WITHIN NORMAL			P	p	
		WITHIN NORMAL			P	P	
		WITHIN NORMAL			P	P	
		WITHIN NORMAL			P	P	
		WIŢHIN NORMAL			P	P	
		WITHIN NORMAL			P	P	
PUP#					P	P	
PUP#		WITHIN NORMAL			P	P	
PUP#		WITHIN NORMAL			P	P	
PUP#		WITHIN NORMAL			P .		
PUP#	15	WITHIN NORMAL	LIMITS		P	P	
		WITHIN NORMAL			P	P	
		WITHIN NORMAL			P	P	
		WITHIN NORMAL			₽	Р	
		WITHIN NORMAL			P	P	
	_	WITHIN NORMAL			P	P	
PUP#	6	WITHIN NORMAL			P	P	
PUP#	7	WITHIN NORMAL			P	P	
	_	WITHIN NORMAL			P	P	
PUP#		WITHIN NORMAL			P	P	
PUP#		WITHIN NORMAL	· ·		P	P	
PUP#		WITHIN NORMAL			P	P	
PUP#		WITHIN NORMAL			P	P	
PUP#		WITHIN NORMAL			P	P	
PUP#		WITHIN NORMAL			P	P .	
PUP#	15	WITHIN NORMAL	LIMITS		P	P	

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX FF

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP 2 900 PPM

FEMALE#	OBSERVATIONS	DAY OF LACTATION	0 1 2 3	4 5 6 7 8			1 1 1	
2544 PUP# 1	WITHIN NORMAL LIMITS		P	Р		 		
PUP# 2	WITHIN NORMAL LIMITS		P	P				
PUP# 3	WITHIN NORMAL LIMITS		P	P				
PUP# 4	WITHIN NORMAL LIMITS		P	P				
PUP# 5	WITHIN NORMAL LIMITS		P	P				
PUP# 6	WITHIN NORMAL LIMITS		P	P				
PUP# 7	WITHIN NORMAL LIMITS		₽	P				
PUP# 8	WITHIN NORMAL LIMITS		P	P				
PUP# 9	WITHIN NORMAL LIMITS		P	P				
PUP# 10	WITHIN NORMAL LIMITS		P	P				
PUP# 11	WITHIN NORMAL LIMITS		P	P				
PUP# 12	WITHIN NORMAL LIMITS		P	P				
PUP# 13	WITHIN NORMAL LIMITS		P	P				
PUP# 14	WITHIN NORMAL LIMITS		P	₽				
PUP# 15	WITHIN NORMAL LIMITS		₽	P				
PUP# 16	WITHIN NORMAL LIMITS		P	P				
PUP# 17	WITHIN NORMAL LIMITS		P	Þ				
PUP# 18	WITHIN NORMAL LIMITS		P	P				
2545 PUP# 1	WITHIN NORMAL LIMITS		P	P				
PUP# 2	WITHIN NORMAL LIMITS		P	P				
PUP# 3	WITHIN NORMAL LIMITS		P	P				
PUP# 4	WITHIN NORMAL LIMITS		P	P				
PUP# 5	WITHIN NORMAL LIMITS		P	P				
PUP# 6	WITHIN NORMAL LIMITS		P	P				
PUP# 7	WITHIN NORMAL LIMITS		P	P	•			
PUP# 8	WITHIN NORMAL LIMITS		P	P				
PUP# 9	WITHIN NORMAL LIMITS		P	P				
PUP# 10	WITHIN NORMAL LIMITS		P	P				
PUP# 11	WITHIN NORMAL LIMITS		P	P				
PUP# 12	WITHIN NORMAL LIMITS		P	P				
PUP# 13	WITHIN NORMAL LIMITS		P	P				

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX FF

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP	•	000	DDM
(+RCHP	~	900	PPM

												- -										 . -	. -	·
FEMALE#		OBSERVATIONS		DAY OF LACTATION	0 1	L 2	3 4	4 5	5 6	7	8 9	1 9 0	1	1 1 2 3	. 1	1 : 5 (1 1 5 7	8	9 (2 2	_			
2545 PUP# 1	.4	WITHIN NORMAL			P		1	P														 		
2546 PUP#	1	WITHIN NORMAL	LIMITS		P		I	P																
PUP#	2	WITHIN NORMAL	LIMITS		P		3	P																
PUP#	3	WITHIN NORMAL	LIMITS		P		I	P																
PUP#	4	WITHIN NORMAL	LIMITS		P		1	Ρ																
PUP#	5	WITHIN NORMAL	LIMITS		P		I	Ρ																
PUP#	6	WITHIN NORMAL	LIMITS		P		I	P																
PUP#	7	WITHIN NORMAL	LIMITS		P		1	₽																
PUP#	8	WITHIN NORMAL	LIMITS		P		1	₽																
PUP#	9	WITHIN NORMAL	LIMITS		P		I	Ρ																
PUP# 1		WITHIN NORMAL			P		I	₽																
PUP# 1		WITHIN NORMAL			P		I	P																
PUP# 1		WITHIN NORMAL			P		E	₽																
PUP# 1		WITHIN NORMAL			Ρ		Į	₽																
PUP# 1		WITHIN NORMAL			P		E	P																
PUP# 1	.5	WITHIN NORMAL	LIMITS		P		Ι	Ρ																
2547 PUP#	1	WITHIN NORMAL	LIMITS		P		E	₽																
PUP#	2	WITHIN NORMAL	LIMITS		P																			
•		WITHIN NORMAL			P		Ę	₽																
PUP#	4	WITHIN NORMAL	LIMITS		P		E	₽																
		WITHIN NORMAL			P		I	₽																
- "	6	WITHIN NORMAL	LIMITS		P		Į	₽																
•	7	WITHIN NORMAL	LIMITS		P		I	₽																
PUP#	8	WITHIN NORMAL	LIMITS		P		I	₽																
	9	WITHIN NORMAL			P		E	₽																
PUP# 1	.0	WITHIN NORMAL	LIMITS		P		E	₽																
PUP# 1	.1	WITHIN NORMAL	LIMITS		P		E	₽																
PUP# 1	.2	WITHIN NORMAL	LIMITS		P		E	P																
PUP# 1	.3	WITHIN NORMAL	LIMITS		P		E	₽																
PUP# 1	.4	WITHIN NORMAL	LIMITS		₽		Ę	9																

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX FF

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

MALE#	OBSERVATIONS	DAY OF LACTATION 0 1	1 1 1 1 1 1 1 1 1 2 2 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
2547 PUP# 15	WITHIN NORMAL LIMITS		p
	WITHIN NORMAL LIMITS	P	P
2548 PUP# 1	WITHIN NORMAL LIMITS	P	p
PUP# 2	WITHIN NORMAL LIMITS	P	P
PUP# 3	WITHIN NORMAL LIMITS	P	P
PUP# 4	WITHIN NORMAL LIMITS	P	P
PUP# 5	WITHIN NORMAL LIMITS	P	P ·
PUP# 6	WITHIN NORMAL LIMITS	P	P
PUP# 7	WITHIN NORMAL LIMITS	P	P
PUP# 8	WITHIN NORMAL LIMITS	P	P
PUP# 9	WITHIN NORMAL LIMITS	P	P
PUP# 10	WITHIN NORMAL LIMITS	P	P
PUP# 11	WITHIN NORMAL LIMITS	P	p
PUP# 12	WITHIN NORMAL LIMITS	P	P
PUP# 13	WITHIN NORMAL LIMITS	P	P
PUP# 14	WITHIN NORMAL LIMITS	· P	P
PUP# 15	WITHIN NORMAL LIMITS	P	P
PUP# 16	WITHIN NORMAL LIMITS	P	p
PUP# 17	WITHIN NORMAL LIMITS	Р	P
2549 PUP# 2	WITHIN NORMAL LIMITS	P	P
PUP# 3	WITHIN NORMAL LIMITS	P	P
PUP# 4	WITHIN NORMAL LIMITS	P	p
PUP# 5	WITHIN NORMAL LIMITS	P	P
PUP# 6	WITHIN NORMAL LIMITS	P	P
PUP# 7	WITHIN NORMAL LIMITS	P	P
PUP# 8	WITHIN NORMAL LIMITS	₽	P
PUP# 9	WITHIN NORMAL LIMITS	P	
PUP# 10	WITHIN NORMAL LIMITS	P	P
PUP# 11	WITHIN NORMAL LIMITS	P	P
PUP# 12	WITHIN NORMAL LIMITS	P	P

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX FF

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP 2 900	0 1	PPM
-------------	-----	-----

ALE#	(OBSERVATIONS		DAY OF LACTATION	0 1 2 3	4 5	1 6 7 8 9 0		1122	
2549 PUP# 1	3 1	WITHIN NORMAL	LIMITS		P	P			 	
PUP# 1	4 1	WITHIN NORMAL	LIMITS		P	P				
PUP# 1	5 1	WITHIN NORMAL	LIMITS		₽	P				
PUP# 1	6 1	WITHIN NORMAL	LIMITS		P	P				
2550 PUP#		WITHIN NORMAL			P	P				
"		WITHIN NORMAL		•	P					
		WITHIN NORMAL			P	P				
"		WITHIN NORMAL			P	₽		•		
,		WITHIN NORMAL			P	₽				
		WITHIN NORMAL			P	P				
		WITHIN NORMAL			P	P	-			
		WITHIN NORMAL			P	P				
**		WITHIN NORMAL				P				
PUP# 1		WITHIN NORMAL			P	P				
PUP# 1		WITHIN NORMAL			P	P				
PUP# 1		WITHIN NORMAL			P	P				
PUP# 1		WITHIN NORMAL			P	P				
PUP# 1		WITHIN NORMAL			₽	P				
PUP# 1		WITHIN NORMAL			P	P				
PUP# 1	6 1	WITHIN NORMAL	LIMITS		P	P				
		WITHIN NORMAL			P	P				
"		WITHIN NORMAL			P	P				
"	-	WITHIN NORMAL			P	P				
"		WITHIN NORMAL			₽	P				
		WITHIN NORMAL			P	P				
		WITHIN NORMAL			P	P				
		WITHIN NORMAL			P	P				
		WITHIN NORMAL			P	P				
"		WITHIN NORMAL			P	P				
PUP# 1	0 1	WITHIN NORMAL	LIMITS		P	P				

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX FF

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP 2 900 PPM

			DAY OF						 	 	 		 	 	 	
FEMALE#	OBSERVATIONS			0 1 2 3	3 4	5 6	7 8	8 9				l 1 3 9				
2551 PUP# 11	WITHIN NORMAL			P	P				 	 	 		 	 	 	
PUP# 12	WITHIN NORMAL	LIMITS		P	₽											
PUP# 13	WITHIN NORMAL	LIMITS		P	P											
PUP# 14	WITHIN NORMAL	LIMITS		P	P											
PUP# 15	WITHIN NORMAL	LIMITS		P	P											
PUP# 16	WITHIN NORMAL	LIMITS		P	P											
	WITHIN NORMAL	LIMITS		P	P											
PUP# 2				P	P											
PUP# 3				P	P											
PUP# 4				P	P											
PUP# 5				P	P											
PUP# 6				P	P											
PUP# 7				P	P											
PUP# 8				P	P											
PUP# 9		·		P	P											
PUP# 10				P	P											
PUP# 11	WITHIN NORMAL	LIMITS		P	P											
PUP# 12	WITHIN NORMAL	LIMITS		P	P											
PUP# 13	WITHIN NORMAL	LIMITS		P	P											
PUP# 14	WITHIN NORMAL	LIMITS		P	P											
PUP# 15	WITHIN NORMAL	LIMITS		P	P											
2553 PUP# 1	WITHIN NORMAL	LIMITS		P	P											
PUP# 2	WITHIN NORMAL	LIMITS		P	P											
PUP# 3	WITHIN NORMAL	LIMITS		P	P											
PUP# 4	WITHIN NORMAL	LIMITS		P	₽											
PUP# 5	WITHIN NORMAL	LIMITS		P	P											
PUP# 6	WITHIN NORMAL I	LIMITS		P	P											
PUP# 7	WITHIN NORMAL 1	LIMITS		P	P											
PUP# 8	WITHIN NORMAL I	LIMITS		P	P											
PUP# 9	WITHIN NORMAL	LIMITS		P	P											

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX FF

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP	2	900	DDM

FEMALE#	OBSERVATIONS	DAY OF LACTATION	0 1 2 3	4,56789	1 1 2 3					 	
2553 PUP# 10	WITHIN NORMAL LIMITS		P	P	 	 	 	 	 	 	
PUP# 11	WITHIN NORMAL LIMITS		P	P							
PUP# 12	WITHIN NORMAL LIMITS		P	P							
PUP# 13	WITHIN NORMAL LIMITS		P	P							
PUP# 14	WITHIN NORMAL LIMITS		p	P							
PUP# 15	WITHIN NORMAL LIMITS		P P	P							

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX FF

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

	GROUP	3	3000 PPM
--	-------	---	----------

		DAY OF					 1 1	. 1	1	 1 1	1	7	1 1	2	 	 	 	
FEMALE#	OBSERVATIONS		0 1 2 3	4	5 6	78												
3542 PUP# 1	. WITHIN NORMAL LIMITS		P	P			 								 	 	 	
PUP# 2	WITHIN NORMAL LIMITS	3	₽	P														
PUP# 3	WITHIN NORMAL LIMITS	J	₽	P														
PUP# 4	WITHIN NORMAL LIMITS	1	₽	P														
PUP# 5	WITHIN NORMAL LIMITS	1	P	P														
PUP# 6	WITHIN NORMAL LIMITS	'I	₽	P														
PUP# 7	WITHIN NORMAL LIMITS	1	P	P														
PUP# 8	WITHIN NORMAL LIMITS	I.	P	P														
PUP# 9	WITHIN NORMAL LIMITS	T.	P	P														
PUP# 10	WITHIN NORMAL LIMITS	'I	P	P														
PUP# 11	WITHIN NORMAL LIMITS	Ĭ.	₽	P														
PUP# 12	WITHIN NORMAL LIMITS	I	P	P														
PUP# 13	WITHIN NORMAL LIMITS	I	P	P														
PUP# 14	WITHIN NORMAL LIMITS	I	?	P														
PUP# 15	WITHIN NORMAL LIMITS	I	?	P														
PUP# 16	WITHIN NORMAL LIMITS	I	?	P														
PUP# 17	WITHIN NORMAL LIMITS	I	?	P														
3543 PUP# 1	WITHIN NORMAL LIMITS	I	?	P														
PUP# 2	WITHIN NORMAL LIMITS	I	?	₽														
PUP# 3	WITHIN NORMAL LIMITS	I	?	P														
PUP# 4	WITHIN NORMAL LIMITS	I	?	₽														
PUP# 5	WITHIN NORMAL LIMITS	I	?	P														
PUP# 6	WITHIN NORMAL LIMITS	I	•	P														
PUP# 7	WITHIN NORMAL LIMITS	I	,	P														
PUP# 8	WITHIN NORMAL LIMITS	I	,	P														
PUP# 9	WITHIN NORMAL LIMITS	I	•	P														
PUP# 10	WITHIN NORMAL LIMITS	I	,	P														
PUP# 11	WITHIN NORMAL LIMITS	I	?	P														
PUP# 12	WITHIN NORMAL LIMITS	I	?	P														
PUP# 13	WITHIN NORMAL LIMITS	I																

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX FF

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

CROITE	3	3000	DDL

				DAY OF						 1 .	1 1	1 1	1	1 1	1	1 1	2	2	 	 	
FEMALE#		OBSERVATIONS		DAY OF LACTATION	0 1 2 3	4	5	6 7	7 8												
3544 PUP#	2	WITHIN NORMAL			P	 P				 									 	 	
	3	WITHIN NORMAL			P	P															
	4	WITHIN NORMAL			P	P															
	5	WITHIN NORMAL			P	p															
	6	WITHIN NORMAL			P	p															
PUP#	7	WITHIN NORMAL	LIMITS		P	P															
PUP#	8	WITHIN NORMAL	LIMITS		P	P															
PUP#	9	WITHIN NORMAL	LIMITS		P	P															
PUP# 1	.0	WITHIN NORMAL	LIMITS		P	P															
PUP# 1	.1	WITHIN NORMAL	LIMITS		P	P															
PUP# 1	.2	WITHIN NORMAL	LIMITS		P	P															
PUP# 1	.3	WITHIN NORMAL	LIMITS		P	P															
PUP# 1	.4	WITHIN NORMAL	LIMITS		P	₽															
PUP# 1	.5	WITHIN NORMAL	LIMITS		P	Ρ															
PUP# 1	.6	WITHIN NORMAL	LIMITS		P	P															
3545 PUP#	1	WITHIN NORMAL	LIMITS		P	P															
PUP#	2	WITHIN NORMAL	LIMITS		P	P															
PUP#	3	WITHIN NORMAL	LIMITS		P	P															
PUP#	4	WITHIN NORMAL	LIMITS		P	P															
PUP#	5	WITHIN NORMAL	LIMITS		P	P															
PUP#	6	WITHIN NORMAL	LIMITS		P	₽															
PUP#	7	WITHIN NORMAL	LIMITS		P	P															
PUP#	8	WITHIN NORMAL	LIMITS		P	P															
PUP#	9	WITHIN NORMAL	LIMITS		P	P															
PUP# 1	.0	WITHIN NORMAL	LIMITS		P																
PUP# 1	1	WITHIN NORMAL	LIMITS		P	P															
PUP# 1	.2	WITHIN NORMAL	LIMITS		P	P															
PUP# 1	.3	WITHIN NORMAL	LIMITS		P	P															

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX FF

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

				DAY OF		1 1 1 1 1 1 1 1 1 2 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
EMALE#		OBSERVATIONS		LACTATION	0 1 2	3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
3546 PUP#	2	WITHIN NORMAL	LIMITS		P	Р
PUP#	3	WITHIN NORMAL	LIMITS		P	P
PUP#	4	WITHIN NORMAL	LIMITS		P	P
PUP#	5	WITHIN NORMAL	LIMITS		P	P
		WITHIN NORMAL			P	P
		WITHIN NORMAL			P	P
PUP#	8	WITHIN NORMAL	LIMITS		P	P
		WITHIN NORMAL			P	
		WITHIN NORMAL			P	P
		WITHIN NORMAL			P	P
		WITHIN NORMAL			P	P
		WITHIN NORMAL			P	P
		WITHIN NORMAL			₽	P
		WITHIN NORMAL			₽	P
PUP#	16	WITHIN NORMAL	LIMITS		P	
3547 PUP#	1	WITHIN NORMAL	LIMITS		P	p
PUP#	2	WITHIN NORMAL	LIMITS		p	P
PUP#	3	WITHIN NORMAL	LIMITS		P	p
PUP#	4	WITHIN NORMAL	LIMITS		P	P
PUP#	5	WITHIN NORMAL	LIMITS		P	P
PUP#	6	WITHIN NORMAL	LIMITS		P	P
PUP#	7	WITHIN NORMAL	LIMITS		P	P
PUP#	8	WITHIN NORMAL	LIMITS		P	P
PUP#	9	WITHIN NORMAL	LIMITS		P	P
PUP#	10	WITHIN NORMAL	LIMITS		P	P
PUP#	11	WITHIN NORMAL	LIMITS		P	P
PUP#	12	WITHIN NORMAL	LIMITS		P	P
PUP#	13	WITHIN NORMAL	LIMITS		P	P
PUP#	14	WITHIN NORMAL	LIMITS		P	P

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX FF

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP	3	3000	PPM

FEMALE#		OBSERVATIONS		DAY OF LACTATION	0 1 2 3	3 4	4 !	5 6	7 8				1 1 7 8				
3548 PUP#	1	WITHIN NORMAL	LIMITS		P]	 Р			 	 	 		 		 	
PUP#	2	WITHIN NORMAL	LIMITS		Ρ.]	P										
PUP#	3	WITHIN NORMAL	LIMITS		P	1	P										
PUP#	4	WITHIN NORMAL	LIMITS		P												
PUP#		WITHIN NORMAL			P]	P										
PUP#	6	WITHIN NORMAL			P]	P										
PUP#	7	WITHIN NORMAL			P		P										
PUP#	8	WITHIN NORMAL			P		Ρ										
- "	9	WITHIN NORMAL			P	1	P										
PUP#		WITHIN NORMAL			P		P										
PUP#		WITHIN NORMAL			P]	Р										
PUP#		WITHIN NORMAL			P												
PUP#		WITHIN NORMAL			P		P										
PUP#		WITHIN NORMAL			P		P										
PUP#	15	WITHIN NORMAL	LIMITS		P	1	P										
3549 PUP#	1	WITHIN NORMAL	LIMITS		P	1	P										
PUP#	2	WITHIN NORMAL	LIMITS		P	1	P										
PUP#	3	WITHIN NORMAL	LIMITS		P												
PUP#	4	WITHIN NORMAL	LIMITS		P]	P										
PUP#	5	WITHIN NORMAL	LIMITS		P	1	P										
PUP#	6	WITHIN NORMAL	LIMITS		P	3	P										
PUP#	7	WITHIN NORMAL	LIMITS		P	1	P										
PUP#	8	WITHIN NORMAL	LIMITS		P	1	P										
PUP#	9	WITHIN NORMAL	LIMITS		P	1	P										
PUP#	10	WITHIN NORMAL	LIMITS		P	I	P										
PUP#	11	WITHIN NORMAL	LIMITS		P	I	P										
PUP#		WITHIN NORMAL			P	1	P										
PUP#		WITHIN NORMAL	· ·		P	I	P										
PUP#	14	WITHIN NORMAL	-		P	I	P										
PUP#		WITHIN NORMAL			P	I	P								,		
PUP#	16	WITHIN NORMAL	LIMITS		P	I	Ρ										

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX FF

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP 3	3000 PPM	INDIVIDUAL FOR CHINICAL OBSERVATIONS	DURING EACIATION
		DAY OF	1 1 1 1 1 1 1 1 2 2

FEMALE#	OBSERVATIONS	DAY OF LACTATION	0 1 2 3	1 1 1 1 1 1 1 1 1 2 2 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
3550 PUP# 1	WITHIN NORMAL LIMITS		P	P
PUP# 2	WITHIN NORMAL LIMITS		P	P
PUP# 3	WITHIN NORMAL LIMITS		P	P
PUP# 4	WITHIN NORMAL LIMITS		P	P
PUP# 5	WITHIN NORMAL LIMITS		P	P
PUP# 6	WITHIN NORMAL LIMITS		P	P
PUP# 7	WITHIN NORMAL LIMITS		P	P
PUP# 8	WITHIN NORMAL LIMITS		P	P
PUP# 9	WITHIN NORMAL LIMITS		p	P
PUP# 10	WITHIN NORMAL LIMITS		P	P
PUP# 11	WITHIN NORMAL LIMITS		P	P
PUP# 12	WITHIN NORMAL LIMITS		P	P
PUP# 13	WITHIN NORMAL LIMITS		P	P
PUP# 14	WITHIN NORMAL LIMITS		P	P
3551 PUP# 2	WITHIN NORMAL LIMITS		P	P
PUP# 3	WITHIN NORMAL LIMITS		P	P
PUP# 4	WITHIN NORMAL LIMITS		P	P
PUP# 5	WITHIN NORMAL LIMITS		₽	P
PUP# 6	WITHIN NORMAL LIMITS		P	P
PUP# 7	WITHIN NORMAL LIMITS		P	P
PUP# 8	WITHIN NORMAL LIMITS		P	P
PUP# 9	WITHIN NORMAL LIMITS		P	P
PUP# 10	WITHIN NORMAL LIMITS		P	P
PUP# 11	WITHIN NORMAL LIMITS		P	P
PUP# 12	WITHIN NORMAL LIMITS		P	P
PUP# 13	WITHIN NORMAL LIMITS		P	P
PUP# 14	WITHIN NORMAL LIMITS		P	P
PUP# 15	WITHIN NORMAL LIMITS		P	P
PUP# 16	WITHIN NORMAL LIMITS		P	P

Huntingdon Life Sciences 03-42428 SATELLITE STUDY

APPENDIX FF

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

	GROUP	3	3000	PPM
--	-------	---	------	-----

EMALE#	OBSERVATIONS	DAY OF LACTATION	0 1 2	3 4 5	6 7 8	1 1 1 2					
3552 PUP# 1	. WITHIN NORMAL LIMITS		P	Р		 	 	 	 	 	
PUP# 2	WITHIN NORMAL LIMITS		P	P							
PUP# 3			₽	P							
PUP# 4			P	P							
PUP# 5			₽	P							
PUP# 6			P	P							
PUP# 7			P	P							
PUP# 8			₽	P							
PUP# 9			P	P							
PUP# 10			P	P							
PUP# 11			P	P							
PUP# 12			P	P							
PUP# 13			P	P							
PUP# 14 PUP# 15			P P	P P							
PUP# 15	WITHIN NORMAL LIMITS		P	Р							
3553 PUP# 1	WITHIN NORMAL LIMITS		P	P							
PUP# 2	WITHIN NORMAL LIMITS		P	P							
PUP# 3	WITHIN NORMAL LIMITS		₽	P							
PUP# 4	WITHIN NORMAL LIMITS		₽	P							
PUP# 5	WITHIN NORMAL LIMITS		P	P							
PUP# 6	WITHIN NORMAL LIMITS		P	P							
PUP# 7	WITHIN NORMAL LIMITS		₽	P							
PUP# 8	WITHIN NORMAL LIMITS		P	P							
PUP# 9			P	P							
PUP# 10			₽	P							
PUP# 11			P	P							
PUP# 12			P	P							
PUP# 13			P	P							
PUP# 14			P	P							
PUP# 15 PUP# 16			P P	P P							

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX FF

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP 3 3000 PPM

FEMALE#	OBSERVATIONS	DAY OF LACTATION	0 1 2 3	3 4 5 6 7 8 9	1 1 1 1 1 2 5 6 7 8 9 0	
3553 PUP# 17 PUP# 18	WITHIN NORMAL LIMITS WITHIN NORMAL LIMITS		P P	P P	 	

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX FF

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP	4	9000	PPM
010001	-1	2000	E E I-I

MALE#		OBSERVATIONS	DAY OF LACTATION	0	1 2	3 4	1 5	6 '	7 8	0 1						
4542 PUP#	1	WITHIN NORMAL LIMITS		P			 ?			 						
PUP#	2	WITHIN NORMAL LIMITS	,	P		E	?									
PUP#	3	WITHIN NORMAL LIMITS		P		F	•									
PUP#	4	WITHIN NORMAL LIMITS		P		I	•									
PUP#	5	WITHIN NORMAL LIMITS		P		Ε	?									
PUP#	6	WITHIN NORMAL LIMITS		P		I	?									
PUP#	7	WITHIN NORMAL LIMITS		P		E	,									
PUP#	8	WITHIN NORMAL LIMITS		P		F	•									
PUP#	9	WITHIN NORMAL LIMITS		P		E	•									
PUP#		WITHIN NORMAL LIMITS		P		E										
PUP#		WITHIN NORMAL LIMITS		P		F										
PUP#		WITHIN NORMAL LIMITS		P		E										
PUP# :		WITHIN NORMAL LIMITS		P		P										
PUP# :		WITHIN NORMAL LIMITS		₽		F										
PUP# :	15	WITHIN NORMAL LIMITS		P		F	?									
4543 PUP#	1	WITHIN NORMAL LIMITS		₽												
PUP#	2	WITHIN NORMAL LIMITS		P		F	•									
PUP#	3	WITHIN NORMAL LIMITS		P		F	,									
PUP#	4	WITHIN NORMAL LIMITS		P		E	,									
PUP#	5	WITHIN NORMAL LIMITS		P		P	•									
PUP#	6	WITHIN NORMAL LIMITS		P												
PUP#	7	WITHIN NORMAL LIMITS		P		P	•									
PUP#	8	WITHIN NORMAL LIMITS		P		P	•									
PUP#	9	WITHIN NORMAL LIMITS		P		P	•									
PUP# 3		WITHIN NORMAL LIMITS		P		P	,									
PUP# :		WITHIN NORMAL LIMITS		P		P)									
PUP# :		WITHIN NORMAL LIMITS		P												
PUP# :		WITHIN NORMAL LIMITS		P												
PUP# :		WITHIN NORMAL LIMITS		P												
PUP# :		WITHIN NORMAL LIMITS		P												
PUP# :	L6	WITHIN NORMAL LIMITS		P		P	•									

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX FF

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP	4	9000	PPM

'EMALE#	OBSERVATIONS	DAY OF LACTATION	0 1 2 3	1 1 1 1 1 1 1 1 1 1 2 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
4543 PUP# 6	SCABS			P
PUP# 15	SCABS			P
PUP# 14	SCABS			Р
4544 PUP# 1	WITHIN NORMAL LIMITS		P	р
PUP# 2	WITHIN NORMAL LIMITS		P	p
PUP# 3	WITHIN NORMAL LIMITS		P	P
PUP# 4	WITHIN NORMAL LIMITS		P	P
PUP# 5	WITHIN NORMAL LIMITS		P	P
PUP# 6	WITHIN NORMAL LIMITS		₽	P
PUP# 7	WITHIN NORMAL LIMITS		P	P
PUP# 8	WITHIN NORMAL LIMITS		P	P
PUP# 9	WITHIN NORMAL LIMITS		P	P
PUP# 10	WITHIN NORMAL LIMITS		P	P
PUP# 11	WITHIN NORMAL LIMITS	:	P	P
PUP# 12	WITHIN NORMAL LIMITS		P	P
PUP# 13	WITHIN NORMAL LIMITS	:	P	P
PUP# 14	WITHIN NORMAL LIMITS	;	₽	P
4545 PUP# 3	WITHIN NORMAL LIMITS	:	P	P .
PUP# 4	WITHIN NORMAL LIMITS		- P	P
PUP# 5	WITHIN NORMAL LIMITS		P	P
PUP# 6	WITHIN NORMAL LIMITS		- P	P
PUP# 7	WITHIN NORMAL LIMITS		•	P
PUP# 8	WITHIN NORMAL LIMITS		P	P
PUP# 9	WITHIN NORMAL LIMITS	-	•	P
PUP# 10	WITHIN NORMAL LIMITS			P
PUP# 11	WITHIN NORMAL LIMITS			P
PUP# 12	WITHIN NORMAL LIMITS	· · · · · · · · · · · · · · · · · · ·	>	P
PUP# 13	WITHIN NORMAL LIMITS		>	p
PUP# 14	WITHIN NORMAL LIMITS		•	P

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX FF

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP 4	9000	DDN

FEMALE#		OBSERVATIONS		DAY OF LACTATION	0 1 2 3	3 4	5	6 7	8			1 1 7 8				
4546 PUP#	1	WITHIN NORMAL	LIMITS		P	P)			 	 	 	 	 	 	
PUP#	2	WITHIN NORMAL	LIMITS		P	P	•									
PUP#	3	WITHIN NORMAL	LIMITS		P	P	•									
PUP#	4	WITHIN NORMAL	LIMITS		₽	P	•									
PUP#	5	WITHIN NORMAL	LIMITS		P	P	•									
PUP#	6	WITHIN NORMAL	LIMITS		P	P	•									
PUP#	7	WITHIN NORMAL			P	P	•									
11	8	WITHIN NORMAL			P	P	•									
PUP#	9	WITHIN NORMAL			P	P	•									
PUP#		WITHIN NORMAL			P	P	,									
PUP#		WITHIN NORMAL			P ·	P										
PUP#		WITHIN NORMAL			P	P										
PUP#		WITHIN NORMAL			P	P										
PUP#	14	WITHIN NORMAL	LIMITS		P	P	•									
4547 PUP#	1	WITHIN NORMAL	LIMITS		P	P	,									
PUP#	2	WITHIN NORMAL	LIMITS		P	P	•									
PUP#	3	WITHIN NORMAL	LIMITS		P	P	•									
PUP#	4	WITHIN NORMAL			P	P	•									
PUP#	5	WITHIN NORMAL	LIMITS		P	P	•									
PUP#	6	WITHIN NORMAL	LIMITS		P	P	•									
PUP#	7	WITHIN NORMAL	LIMITS		P	P	1									
PUP#	8	WITHIN NORMAL	LIMITS		P	P)									
PUP#	9	WITHIN NORMAL	LIMITS		P	P	•									
. PUP#	10	WITHIN NORMAL	LIMITS		P	P	,									
PUP#	11	WITHIN NORMAL	LIMITS		P	₽	•									
PUP#	12	WITHIN NORMAL	LIMITS		P	P	•						•			
PUP#	13	WITHIN NORMAL	LIMITS		P	P	,									
PUP#	14	WITHIN NORMAL	LIMITS		P	₽	•									
PUP#	15	WITHIN NORMAL	LIMITS		P	P	•									

GROUP 4

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

9000 PPM

APPENDIX FF

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

EMALE#		OBSERVATIONS		1 1 1 1 1 1 1 1 1 1 1 2 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0	
4548 PU	P# 2	WITHIN NORMAL LIMITS	 P	Р	
PUI	P# 3	WITHIN NORMAL LIMITS	P	P	
PUI		WITHIN NORMAL LIMITS	P	P	
PUI		WITHIN NORMAL LIMITS	P	P	
PUI		WITHIN NORMAL LIMITS	P	P	
PUI		WITHIN NORMAL LIMITS	P	P	
PUI			P	P	
		WITHIN NORMAL LIMITS	P	P	
	2# 10		P	Р	
	9# 11		P	P	
		WITHIN NORMAL LIMITS	Þ	P	
	2# 13		P	P	
-		WITHIN NORMAL LIMITS	P	p	
	2# 15		P	P	
PUI	P# 16	WITHIN NORMAL LIMITS	P	P	
4549 PUI	2# 1	WITHIN NORMAL LIMITS	P	P	
PUI	?# 2	WITHIN NORMAL LIMITS	₽	P	
PUI	?# 3	WITHIN NORMAL LIMITS	₽	P	
PUI		WITHIN NORMAL LIMITS	P	P	
PUI		WITHIN NORMAL LIMITS	P	P	
PUI		WITHIN NORMAL LIMITS	P	P	
PUI			P	p	
PUI		WITHIN NORMAL LIMITS	P	P	
	9 #		P	P	
	?# 1 0		P	P	
PUI	2# 11	WITHIN NORMAL LIMITS	P	P	

P

P

CODE: 1-SLIGHT 2-MODERATE 3-MARKED P-PRESENT

PUP# 12 WITHIN NORMAL LIMITS

PUP# 13 WITHIN NORMAL LIMITS
PUP# 14 WITHIN NORMAL LIMITS

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX FF

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

				DAY OF				1	1 1	1]	. 1	1 1	1 1	2 2	2	
EMALE#		OBSERVATIONS		LACTATION	0 1 2 3	4 5	678	3 9 0	1 2	3 4	. 5	6 7	8 9	0 1	L 	
4550 PUP#	1	WITHIN NORMAL	LIMITS		Р	P										
PUP#	2	WITHIN NORMAL	LIMITS		P	P										
PUP#	3	WITHIN NORMAL	LIMITS		P	P										
PUP#	4	WITHIN NORMAL	LIMITS		P	P										
PUP#	5	WITHIN NORMAL	LIMITS		P	P										
PUP#	б	WITHIN NORMAL	LIMITS		P	P										
PUP#	7	WITHIN NORMAL	LIMITS		P	P										
PUP#	8	WITHIN NORMAL	LIMITS		P	P										
PUP#	9	WITHIN NORMAL	LIMITS		P	P										
PUP# :	10	WITHIN NORMAL	LIMITS		P	P										
PUP# :	11	WITHIN NORMAL	LIMITS		P	P										
PUP# :	12	WITHIN NORMAL	LIMITS		P	P										
PUP# :	13	WITHIN NORMAL	LIMITS		P	P										
PUP# 3	14	WITHIN NORMAL	LIMITS		P	P										
PUP# :	15	WITHIN NORMAL	LIMITS		P	P										
PUP# :	16	WITHIN NORMAL	LIMITS		P	P										
4551 PUP#	2	WITHIN NORMAL	LIMITS		P	P										
PUP#	3	WITHIN NORMAL	LIMITS		P	P										
PUP#	4	WITHIN NORMAL	LIMITS		P	P										
PUP#	5	WITHIN NORMAL	LIMITS		P	P										
PUP#	6	WITHIN NORMAL	LIMITS		P	P										
PUP#	7	WITHIN NORMAL	LIMITS		P	P										
PUP#	8	WITHIN NORMAL	LIMITS		P	P										
PUP#	9	WITHIN NORMAL	LIMITS		P	P										
PUP# :	10	WITHIN NORMAL	LIMITS		P	P										
PUP# :	11	WITHIN NORMAL	LIMITS		P	P										
PUP# :	12	WITHIN NORMAL	LIMITS		P	₽										
PUP# :	13	WITHIN NORMAL	LIMITS		P	P										
PUP# :	14	WITHIN NORMAL	LIMITS		P	P										
PUP# :	15	WITHIN NORMAL	LIMITS		P	₽										

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX FF

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

	GROUP	4	9000	PPM
--	-------	---	------	-----

FEMALE#		OBSERVATIONS	DAY OF LACTATION	0 1 2 3	4 5 6	5 7 8		111345			
4552 PUP#	1	WITHIN NORMAL LIMIT	· · · · · · · · · · · · · · · · · · ·	P	P		 		 	 	
PUP#	2	WITHIN NORMAL LIMIT		P	P						
PUP#	3	WITHIN NORMAL LIMIT		P	P						
PUP#	4	WITHIN NORMAL LIMIT		P	P						
PUP#	5	WITHIN NORMAL LIMIT		P	P						
PUP#		WITHIN NORMAL LIMIT		P	P						
PUP#	7	WITHIN NORMAL LIMIT		P	P						
		WITHIN NORMAL LIMIT		P	P						
PUP#		WITHIN NORMAL LIMIT		P	P						
PUP# 1		WITHIN NORMAL LIMIT		P	P						
PUP# 1		WITHIN NORMAL LIMIT		P	P						
PUP# 1		WITHIN NORMAL LIMIT		P	P						
PUP# 1	3	WITHIN NORMAL LIMIT		P	P						
4553 PUP#	1	WITHIN NORMAL LIMIT		P	P						
PUP#	2	WITHIN NORMAL LIMIT		P	P						
PUP#	3	WITHIN NORMAL LIMIT		P	P						
PUP#	4	WITHIN NORMAL LIMIT		P	P						
PUP#	5	WITHIN NORMAL LIMIT		P	P						
PUP#	6	WITHIN NORMAL LIMIT		P	P						
PUP#	7	WITHIN NORMAL LIMIT		P	P						
PUP#	8	WITHIN NORMAL LIMIT		P	P						
PUP#	9	WITHIN NORMAL LIMIT		P	P						
PUP# 1	0	WITHIN NORMAL LIMIT		P	P						
PUP# 1	1	WITHIN NORMAL LIMIT		P	P						
PUP# 1	2	WITHIN NORMAL LIMIT		P	P						
PUP# 1	3	WITHIN NORMAL LIMIT		P	P						
PUP# 1	4	WITHIN NORMAL LIMIT		P	P						
PUP# 1	5	WITHIN NORMAL LIMIT		P	P						
PUP# 1	6	WITHIN NORMAL LIMIT		P	P						

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX GG

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

GROUP 1	0 PPM						INDIAL	DUAL P	UP BOD	Y WEIG	HTS (G	RAMS)					LACT	ATION	DAY 1	
FEMALE#	MEAN	1	PUP# 2	3	4	5	6	7	8	9	10	11	12	13	14	1,5	16	17	18	19
1542 1543 1544 1545	6.1 6.1 6.8 6.7	M 6.3 6.5 D	6.1 6.6 7.3 7.0	5.8 6.4 7.0 6.6	6.6 5.8 7.3 6.5	6.7 5.9 6.9 7.0	5.9 5.9 6.8 7.1	6.6 6.4 7.2 7.1	6.4 6.0 6.4 6.9	6.6 6.1 7.0 6.4	5.5 6.0 7.2 6.6	6.0 5.9 6.5 7.0	5.8 6.1 6.9 5.7	5.7 6.0 6.7 6.9	5.8 5.7 6.4	6.2 6.0 7.0	6.2 6.3 6.0	5.6	6.2	
1546 1547 1548 1549 1550 1551 1552	6.5 6.8 7.7 6.7 6.8 6.1 7.6 7.7	6.8 7.2 8.3 7.0 6.9 6.3 7.7	7.2 7.7 8.5 6.6 7.2 6.2 8.1 8.0	7.0 6.4 8.0 6.9 7.0 6.3 8.4 7.8	6.9 8.2 7.0 7.1 6.1 8.2 7.8	6.5 6.9 8.2 6.9 7.2 6.1 7.4 7.1	6.6 6.9 8.0 6.9 7.4 6.3 7.2 7.7	6.9 7.1 6.7 7.0 6.3 5.8 7.6 8.0	6.6 6.8 7.5 6.4 6.6 6.2 7.4 7.3	6.5 6.3 6.4 6.9 6.7 6.1 7.5 7.6	6.2 6.3 7.1 6.8 6.9 5.5 7.6 7.3	6.1 7.1 7.6 5.7 6.1 7.5 8.0	6.2 6.4 6.3 6.2 6.8 7.7	6.5 6.7 6.0 7.8	5.6 6.6 5.9	6.3				
MEAN S.D. N	6.8 0.59 12																			

PUP STATUS CODES: D-DIED M-MISSING

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX GG

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

GROUP 2	900 PP	M															LACT	MOITA	DAY 1	
FEMALE#	MEAN		PUP#																	
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
2542	5.8	s	6.3	6.1	6.4	5.7	6.3	6.0	5.3	5.2	6.6	4.9	5.5	5.9	6.0	5.6				
2543	7.2	7.2	7.3	7.6	7.3	8.1	7.5	6.7	7.4	7.2	6.6	6.7	6.6	7.9	7.2	6.9				
2544	5.3	4.7	4.7	5.4	5.7	5.9	5.4	4.7	4.8	5.5	5.4	5.0	5.9	5.8	5.3	5.4	6.0	5.2	5.3	
2545	6.4	6.9	6.6	6.8	6.0	6.7	6.1	6.6	6.5	6.6	6.2	6.0	6.5	6.1	6.6					
2546	7.0	7.1	7.0	7.3	7.6	7.0	7.2	8.0	7.3	6.9	6.3	6.8	6.1	6.8	6.3	7.4				
2547	6.3	5.2	D	6.6	6.6	6.7	6.5	6.6	6.4	5.9	6.3	6.4	5.5	6.6	5.9	7.2	6.0			
2548	6.7	6.5	6.6	7.3	7.0	7.3	7.0	6.5	6.8	7.2	6.5	6.6	6.2	6.8	6.8	6.7	6.0	6.8		
2549	7.1	D	7.5	8.2	7.5	6.6	7.9	6.9	7.0	6.8	7.1	6.2	7.0	7.2	6.9	7.0	6.9			
2550	6.3	5.9	M	6.4	6.8	6.6	7.5	6.6	5.2	6.3	6.8	5.9	5.8	6.3	6.4	6.4	5.3			
2551	6.4	6.4	6.4	6.3	6.9	6.6	6.8	6.0	6.4	6.5	5.9	6.0	6.3	6.1	6.7	6.5	6.9			
2552	7.1	6.8	7.1	7.4	6.9	6.8	7.2	7.0	7.1	7.1	7.1	7.1	7.1	6.7	7.6	6.8				
2553	6.2	6.7	7.1	6.1	6.4	6.9	5.3	6.3	6.3	6.0	6.1	6.1	6.1	5.7	6.0	6.1				
MEAN	6.5																			
S.D.	0.56																			
N	12																			

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX GG

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

GROUP 3	3000 E	PPM															LACT	ATION	DAY 1	
FEMALE#	MEAN		PUP#													-				
		1	2	3	4	5	6	7	8	9	10	11	12	1.3	14	15	16	17	18	19
3542	6.6	7.1	6.3	6.6	6.7	6.7	7.2	7.3	6.8	5.7	6.5	6.7	6.7	6.3	6.3	6.6	6.2	5.8		
3543	7.9	8.3	8.2	7.9	8.3	7.5	8.0	8.0	7.6	7.5	8.0	7.4	7.8	M	0.5	0.0	0.2	5.0		
3544	7.1	D	7.6	7.0	8.1	6.9	7.0	7.6	7.0	6.7	7.1	6.7	6.7	7.2	7.1	6.5	6.9			
3545	6.6	6.9	6.8	7.5	7.1	6.9	7.0	7.5	6.5	6.5	4.0	6.2	6.7	6.3		0.5	0.9			
3546	6.2	D	6.2	6.8	6.9	6.8	6.6	6.0	5.5	D	5.0	5.4	5.0	6.9	6.9	6.7	М			
3547	7.7	7.7	8.2	8.3	7.7	8.0	8.4	7.5	7.1	7.1	7.4	8.4	7.3	7.5	7.2	0.7	1-1			
3548	6.8	7.5	7.5	6.3	7.1	6.8	6.5	6.8	7.0	5.8	7.4	6.4	6.9	6.6	6.9	6.5				
3549	6.3	7.0	6.5	6.5	6.3	6.5	6.3	6.5	6.5	6.6	6.2	6.9	6.3	6.3	5.6	6.1	5.4			
3550	6.9	6.9	6.5	7.7	6.5	6.6	7.4	7.3	7.5	7.6	6.5	6.7	6.6	6.2	6.6	V.1	3.4			
3551	6.3	S	5.9	6.7	6.2	6.5	6.1	7.3	5.9	5.7	5.7	6.4	6.6	6.2	5.9	6.5	6.5			
3552	6.4	6.7	6.3	5.7	6.9	6.8	6.6	6.3	6.6	7.2	6.6	6.4	6.2	5.7	6.0	6.5	0.5			
3553	7.2	7.4	7.2	7.4	8.1	7.8	7.6	7.7	7.5	7.2	7.1	7.4	6.8	6.7	7.2	7.0	6.8	6.5	6.7	
IEAN	6.8																			
3.D.	0.55																			
17	10																			

12

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX GG

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

GROUP 4	9000 F	PM															LACT	ATION	DAY 1	
FEMALE#	MEAN		PUP#																	
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
4542	6.2	6.7	6.7	6.4	6.8	6.0	6.3	6.1	6.4	6.5	5.6	6.4	6.4	6.1	5.1	6.0				
4543	5.8	4.6	6.3	6.4	6.7	5.5	5.7	6.4	5.9	6.4	5.6	5.3	4.3	D	6.0	5.8	6.1			
4544	6.4	6.4	6.4	5.9	6.6	6.7	6.5	6.4	6.2	6.6	6.4	6.1	6.6	6.5	5.8					
4545	7.4	D	s	7.8	7.4	7.8	8.0	7.2	7.7	7.0	6.8	7.0	7.4	7.4	7.5					
4546	7.3	7.9	7.5	7.4	7.1	7.5	7.4	7.8	7.1	6.4	7.3	7.3	7.5	6.4	7.0					
4547	6.2	6.7	6.1	7.2	5.3	5.7	6.7	6.1	6.2	6.4	5.9	6.6	6.1	5.9	6.2	6.3				
4548	7.1	S	7.6	7.2	6.9	8.3	7.4	7.0	7.4	7.3	7.0	7.1	7.0	6.6	6.9	6.4	7.1			
4549	6.0	6.8	6.5	6.4	6.3	6.3	6.1	5.6	5.8	5.8	5.6	5.8	5.9	5.8	5.4	• • •				
4550	6.1	5.9	6.1	6.2	6.3	6.7	6.0	6.3	6.1	6.4	5.7	5.9	5.7	6.3	6.0	5.3	6.1			
4551	7.7	s	8.4	6.3	8.3	7.9	8.2	7.9	7.7	7.6	7.9	7.9	7.8	7.9	7.1	7.5				
4552	7.3	7.0	6.5	7.9	7.6	7.1	7.8	7.3	7.3	7.1	7.1	7.3	7.5	7.3						
4553	7.3	7.4	8.2	7.3	7.5	7.5	7.3	7 - 2	7.1	7.0	7.3	6.6	7.9	7.1	7.1	7.3	6.3			
MEAN	6.7																			
S.D.	0.67																			
N	12																			

PUP STATUS CODES: S-STILLBORN D-DIED

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX GG

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

GROUP 1	0 PPM						INDIVI	DUAL I	PUP BOI	OY WEIG	HTS (C	GRAMS)					LACT	ATION	DAY 4	
FEMALE#	MEAN	1	PUP#	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1542	8.7	м	8.6	8.6	9.7	8.8	8.7	8.9	8.5	9.1	D	8.4	8.1	м	8.1					<u>-</u>
1543	7.8	8.1	8.1	8.1	7.4	8.1	7.6	7.7	7.9	7.6	7.8	7.3	7.7	7.4		8.8	8.9	7.9	8.8	
1544	9.4	8.9	10.0	9.3	10.0	10.1	9.7	ם	8.9	9.8	10.1	8.9	9.8	9.1	7.6 8.9	7.7 9.4	8.3			
1545	9.9	D	10.5	9.9	9.9	10.3	10.1	10.0	9.7	9.3	9.8	10.5	8.8	9.8	0.5	9.4	7.9			
1546	8.9	8.8	9.5	9.2	9.1	9.2	9.1	9.2	9.2	8.7	8.5	8.7	8.6	8.5	7.9					
1547	9.3	9.6	10.5	8.4	9.6	9.0	9.4	9.7	9.3	8.9	9.0	9.7	8.6	9.4	8.9	9.0				
1548	12.2	12.5	13.6	13.6	13.2	13.0	12.9	11.9	11.2	10.2	10.9	11.7	0.0	J.4	0.5	9.0				
1549	9.3	9.8	9.4	9.6	9.6	9.3	9.3	9.5	9.0	8.9	8.0	9.4	9.3							
1550	10.0	10.1	10.4	10.1	10.1	10.6	10.6	9.3	9.8	10.0	10.3	9.3	9.4							
1551	9.1	9.5	8.9	9.3	8.8	9.4	9.1	8.7	9.3	9.4	9.6	8.3	9.0	9.3	8.7					
1552	10.7	11.4	11.3	11.2	11.3		10.4			10.4	11.4	10.5	9.5	11.1	6.7					
1553	11.4	11.6	11.0	11.7		11.1		11.9		11.3	10.9	11.8	11.5	11.1						
MEAN	9.7																			
S.D.	1.24																			
N	12																			

PUP STATUS CODES: D-DIED M-MISSING

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX GG

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

GROUP 2	900 P	PM															LACT	ATION	DAY 4	
FEMALE#	MEAN	1	PUP#	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
2542	8.6	-	9.2	9.3	0 6															
2543	9.4	8.9	9.9		9.5	8.0	8.8	9.0	7.3	7.3	9.5	7.2	9.0	9.3	М	8.6				
2544	6.9	6.7	5.8	9.9	9.2	11.0	9.6	8.9	9.4	9.7	8.6	8.5	8.8	10.6	9.7	8.8				
2545				7.2	7.7	7.5	7.1	5.9	6.5	7.0	6.9	6.9	6.9	7.4	7.5	6.7	7.6	7.0	6.7	
	8.6	9.3	8.6	8.9	8.1	9.5	8.3	8.3	8.6	9.0	8.5	8.4	7.9	8.6	8.6					
2546	9.8	10.0	9.8	9.8	10.2	10.0	9.9	10.9	10.2	9.8	8.8	9.7	8.8	9.3	9.5	10.3				
2547	9.3	8.4	D	9.9	9.5	9.7	10.0	9.7	10.0	8.6	8.9	9.5	8.0	9.6	9.0	9.9	9.4			
2548	9.4	8.9	9.1	9.6	10.1	10.1	10.7	9.0	9.4	9.8	9.2	8.8	8.5	9.6	9.7	9.7	8.5	9.8		
2549	9.8	D	10.4	10.8	10.4	9.4	9.9	10.1	9.6	М	9.5	7.5	10.3	9.8	9.7	9.8	9.4			
2550	9.2	8.8	M	10.0	9.9	9.3	11.1	10.0	7.9	9.4	10.0	8.4	9.2	9.1	8.4	9.4	7.8			
2551	8.8	9.0	9.1	7.9	9.3	9.5	9.0	7.8	9.2	9.2	8.2	7.8	9.1	8.5	9.1	9.1	9.5			
2552	10.4	10.2	10.7	10.2	9.5	10.3	10.9	10.6	10.8	11.0	10.7	10.2	10.6	9.7	10.7	9.6	٠.٠			
2553	9.1	10.0	9.5	9.0	9.2	9.7	8.1	9.6	8.8	9.3	9.4	8.6	8.7	8.8	9.0	8.9				
MEAN	9.1																			
S.D.	0.86																			
N	12																			

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX GG

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

GROUP 3	3000	PPM															LACT.	ATION	DAY 4	
FEMALE#	MEAN	_	PUP#																	-
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
3542	8.2	8.8	8.2	8.0	8.6	7.9	9.0	8.9	8.5	7.5	8.9	8.7	8.1	7.6	7.7	8.4	7.4	7.3		
3543	11.5	11.9	11.9	11.8	11.7	10.8	10.9	11.2	11.3	11.0	12.0	10.9	12.0	М		• • •				
3544	9.7	D	10.6	9.7	10.9	9.3	9.5	9.9	9.8	9.1	9.7	9.2	9.5	9.2	9.5	9.6	9.9			
3545	9.8	10.1	9.6	10.4	10.1	10.1	10.0	10.9	9.5	9.4	М	9.2	9.3	8.8						
· 3546	8.7	D	8.2	9.1	9.6	9.8	9.6	8.1	7.3	D	7.0	7.4	7.3	9.9	9.7	9.6	М			
3547	9.8	9.7	10.6	10.6	10.0	10.0	10.1	9.5	9.1	9.4	9.1	10.3	9.5	9.5	9.1					
3548	9.4	10.5	10.6	9.5	D	9,4	9.1	9.3	9.6	8.3	8.7	8.8	М	9.1	9.6	9.2				
3549	9.1	10.2	9.3	М	9.2	9.2	8.8	9.1	9.7	9.5	9.1	9.9	9.3	9.2	8.0	8.5	8.1			
3550	9.7	10.1	9.4	10.3	9.3	9.8	9.0	9.7	10.5	10.9	9.5	10.0	9.2	9.2	9.2					
3551	8.8	S	7.6	8.7	8.8	8.7	9.1	9.4	9.0	8.3	8.5	8.7	9.0	9.1	8.7	9.3	8.9			
3552	8.8	9.5	8.6	8.1	9.0	8.8	8.8	8.8	9.0	9.4	9.0	8.8	8.5	7.7	8.4	9.2	0.2			
3553	10.4	11.2	11.0	11.1	12.1	10:4	10.8	10.6	10.1	11.1	9.5	10.9	9.1	9.0	11.2	10.4	9.7	8.8	9.5	
MEAN	9.5																			
S.D.	0.87																			
N	12																			

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX GG

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

GROUP 4	9000	PPM					INDIVI	DOAL P	OF BOL	, were	,	rains)					LACTATION DAY 4			
FEMALE#	MEAN	1	PUP# 2	3	4	5	6	7	8	9	10	11	12	1.3	14	15	16	17	18	19
4542 4543	8.2	8.2 D	9.1 9.2	8.2 9.1	9.0	8.0	8.4 8.4	8.2 9.6	8.1 9.0	8.3 9.2	7.4	8.5 8.5	8.5 M	8.0 D	7.3	8.3 8.5	9.3			
4544 4545	9.6 10.1	9.8 D	9.7 S	9.1	10.2	9.4 10.7	9.5 10.8	9.5 9.8	10.1	9.6 9.1	9.4 9.7	9.3	10.0	9.7 10.2	8.5 10.0	0.5	7.5			
4546 4547	9.6	10.4	9.8 9.2	9.3	9.0	9.9	9.9	9.9 8.4	9.3	9.0	9.6 8.9	9.3	10.2	9.1	9.6	9.0				
4548 4549	9.6 9.1	s 9.8	9.7	9.4	9.4	9.3	10.2	9.8	9.7	10.1	10.1	9.4 8.6	9.2	8.9	9.5 9.0	9.3	9.9			
4550 4551	8.5	8.0 S	8.8	9.2	8.4 11.5	9.2	8.3 10.0	8.8 11.2	8.9 10.7	9.0 11.1	8.1 10.5	8.1 10.9	7.9 10.8	8.0	8.6 10.8	7.8 9.7	8.6			
4552 4553	11.1 10.0	10.1 10.3	10.2 10.8	11.8 10.4	11.5 10.3	11.0 10.8	11.7 10.1	11.5 10.1	11.2 9.4	10.5 9.1	10.7	11.3 9.7	11.6 10.5	11.3 9.9		9.8	8.9			
MEAN S.D. N	9.5 0.86 12																			

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX HH

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP NECROPSY OBSERVATIONS

OUP 1	0 PPM			INDIVIDUAL FOR NECROPSI OBSERVATIONS
EMALE#	PUP# STA	ATUS D	AY ORGAN	OBSERVATION
1542		ĸ	4	NO REMARKABLE OBSERVATIONS
	ЗМ	K	4	NO REMARKABLE OBSERVATIONS
	4M	K	4	NO REMARKABLE OBSERVATIONS
	5M	K	4	NO REMARKABLE OBSERVATIONS
	6M	К	4	NO REMARKABLE OBSERVATIONS
	7M	K	4	NO REMARKABLE OBSERVATIONS
	8M	K	4 .	NO REMARKABLE OBSERVATIONS
	9M	K	4	NO REMARKABLE OBSERVATIONS
	10F	D	1 STOMACH	MILK IN STOMACH
	11F	K	4	NO REMARKABLE OBSERVATIONS
	12F	K	4	NO REMARKABLE OBSERVATIONS
	14F	K	4	NO REMARKABLE OBSERVATIONS
	15F	K	4	NO REMARKABLE OBSERVATIONS
	16F	K	4	NO REMARKABLE OBSERVATIONS
	17F	K	4	NO REMARKABLE OBSERVATIONS
	18F	K	4	NO REMARKABLE OBSERVATIONS
1543	1M	ĸ	4	NO REMARKABLE OBSERVATIONS
	2M	K	4	NO REMARKABLE OBSERVATIONS
	3M	K	4	NO REMARKABLE OBSERVATIONS
	4M	K	4	NO REMARKABLE OBSERVATIONS
	5M	K	4	NO REMARKABLE OBSERVATIONS
	6M	K	4	NO REMARKABLE OBSERVATIONS
	7M	K	4	NO REMARKABLE OBSERVATIONS
	8F	K	4	NO REMARKABLE OBSERVATIONS
	9F	K	4	NO REMARKABLE OBSERVATIONS
	10F	K	4	NO REMARKABLE OBSERVATIONS
	11F	K	4	NO REMARKABLE OBSERVATIONS
	12F	K	4	NO REMARKABLE OBSERVATIONS
	13F	K	4	NO REMARKABLE OBSERVATIONS
	14F	K	4	NO REMARKABLE OBSERVATIONS
	15F	K	4	NO REMARKABLE OBSERVATIONS
	16F	K	4	NO REMARKABLE OBSERVATIONS

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX HH

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP NECROPSY OBSERVATIONS

EMALE#	PUP# S	TATUS	DAY ORGAN	OBSERVATION
1544	1M	ĸ	4	NO REMARKABLE OBSERVATIONS
	2M	ĸ	4	NO REMARKABLE OBSERVATIONS
	3M	K	4	NO REMARKABLE OBSERVATIONS
	4M	K	4	NO REMARKABLE OBSERVATIONS
	5M	K	4	NO REMARKABLE OBSERVATIONS
	6M	K	4	NO REMARKABLE OBSERVATIONS
	7F	D	3 GROSS EXAM	AUTOLYSIS
	8F	K	4	NO REMARKABLE OBSERVATIONS
	9F	K	4	NO REMARKABLE OBSERVATIONS
	10M	K	4	NO REMARKABLE OBSERVATIONS
	11F	K	4	NO REMARKABLE OBSERVATIONS
	12F	K	4	NO REMARKABLE OBSERVATIONS
	13F	K	4	NO REMARKABLE OBSERVATIONS
	14F	K	4	NO REMARKABLE OBSERVATIONS
	15F	K	4	NO REMARKABLE OBSERVATIONS
	16F	K	4	NO REMARKABLE OBSERVATIONS
1545	1F	D	0 LUNGS STOMACH	LUNG FLOATATION TEST - FOUND DEAD NO MILK IN STOMACH
	2M	K	4	NO REMARKABLE OBSERVATIONS
	3M	ĸ	4	NO REMARKABLE OBSERVATIONS
	4M	K	4	NO REMARKABLE OBSERVATIONS
	5M	K	4	NO REMARKABLE OBSERVATIONS
	6M	K	4	NO REMARKABLE OBSERVATIONS
	7M	K	4	NO REMARKABLE OBSERVATIONS
	M8	K	4	NO REMARKABLE OBSERVATIONS
	9 F	K	4	NO REMARKABLE OBSERVATIONS
	10F	K	4	NO REMARKABLE OBSERVATIONS
	11F	ĸ	4	NO REMARKABLE OBSERVATIONS
	12F	ĸ	4	NO REMARKABLE OBSERVATIONS
	13F	ĸ	4	NO REMARKABLE OBSERVATIONS

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX HH

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP NECROPSY OBSERVATIONS

EMALE#	PUP# S	PATUS	DAY ORGAN	OBSERVATION
1546	1M	к	4	NO REMARKABLE OBSERVATIONS
	2M	ĸ	4	NO REMARKABLE OBSERVATIONS
	3M	K	4	NO REMARKABLE OBSERVATIONS
	4M	K	4	NO REMARKABLE OBSERVATIONS
	5M	ĸ	4	NO REMARKABLE OBSERVATIONS
	6M	K	4	NO REMARKABLE OBSERVATIONS
	7M	K	4	NO REMARKABLE OBSERVATIONS
	8F	K	4	NO REMARKABLE OBSERVATIONS
	9F	K	4	NO REMARKABLE OBSERVATIONS
	10F	ĸ	4	NO REMARKABLE OBSERVATIONS
	11F	ĸ	4	NO REMARKABLE OBSERVATIONS
	12F	ĸ	4	NO REMARKABLE OBSERVATIONS
	13F	K	4	NO REMARKABLE OBSERVATIONS
	14F	K	4	NO REMARKABLE OBSERVATIONS
1547	1M	κ .	4	NO REMARKABLE OBSERVATIONS
	2M	K	4	NO REMARKABLE OBSERVATIONS
	3M	K	4	NO REMARKABLE OBSERVATIONS
	4M	K	4	NO REMARKABLE OBSERVATIONS
	5M	K	4	NO REMARKABLE OBSERVATIONS
	6M	K	4	NO REMARKABLE OBSERVATIONS
	7M	K	4	NO REMARKABLE OBSERVATIONS
	8M	K	4	NO REMARKABLE OBSERVATIONS
	9F	ĸ	4	NO REMARKABLE OBSERVATIONS
	10F	ĸ	4	NO REMARKABLE OBSERVATIONS
	11F	ĸ	4	NO REMARKABLE OBSERVATIONS
	12F	к	4	NO REMARKABLE OBSERVATIONS
	13F	к	4	NO REMARKABLE OBSERVATIONS
	14F	ĸ	4	NO REMARKABLE OBSERVATIONS
	15F	ĸ	4	NO REMARKABLE OBSERVATIONS

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX HH

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP NECROPSY OBSERVATIONS

EMALE#	PUP# S	TATUS	DAY ORGAN	OBSERVATION
1548	1M	к	4	NO REMARKABLE OBSERVATIONS
	2M	K	4	NO REMARKABLE OBSERVATIONS
	3M	к	4	NO REMARKABLE OBSERVATIONS
	4M	ĸ	4	NO REMARKABLE OBSERVATIONS
	5M	ĸ	4	NO REMARKABLE OBSERVATIONS
	6M	К	4	NO REMARKABLE OBSERVATIONS
	7F	ĸ	4	NO REMARKABLE OBSERVATIONS
	8F	ĸ	4	NO REMARKABLE OBSERVATIONS
	9F	K	4	NO REMARKABLE OBSERVATIONS
	10F	ĸ	4	NO REMARKABLE OBSERVATIONS
	11F	K	4	NO REMARKABLE OBSERVATIONS
1549	1M	к	4	NO REMARKABLE OBSERVATIONS
	2M	K	4	NO REMARKABLE OBSERVATIONS
	3M	К	4	NO REMARKABLE OBSERVATIONS
	4M	ĸ	4	NO REMARKABLE OBSERVATIONS
	5M	K	4	NO REMARKABLE OBSERVATIONS
	6M	K	4	NO REMARKABLE OBSERVATIONS
	7M	K	4	NO REMARKABLE OBSERVATIONS
	8F	ĸ	4	NO REMARKABLE OBSERVATIONS
	9F	K	4	NO REMARKABLE OBSERVATIONS
	10F	K	4	NO REMARKABLE OBSERVATIONS
	11F	ĸ	4	NO REMARKABLE OBSERVATIONS
	12F	K	4	NO REMARKABLE OBSERVATIONS
1550	1M	к	4	NO REMARKABLE OBSERVATIONS
	2M	K	4	NO REMARKABLE OBSERVATIONS
	3M	ĸ	4	NO REMARKABLE OBSERVATIONS
	4M	K	4	NO REMARKABLE OBSERVATIONS
	5M	K	4	NO REMARKABLE OBSERVATIONS
	6M	K	4	NO REMARKABLE OBSERVATIONS
	7F	K	4	NO REMARKABLE OBSERVATIONS
	8F	K	4	NO REMARKABLE OBSERVATIONS

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX HH

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP NECROPSY OBSERVATIONS

ROUP 1	0 PPM			INDIVIDUAL TOT INCINCTOR CHARLES
FEMALE#	PUP# S'	TATUS	DAY ORGAN	OBSERVATION
1550	(CONTINUE)	: D)		
	9F	ĸ	4	NO REMARKABLE OBSERVATIONS
	10F	K	4	NO REMARKABLE OBSERVATIONS
	11F	ĸ	4	NO REMARKABLE OBSERVATIONS
	12F	K	4	NO REMARKABLE OBSERVATIONS
1551	1M	ĸ	4	NO REMARKABLE OBSERVATIONS
	2M	K	4	NO REMARKABLE OBSERVATIONS
	3M	K	4	NO REMARKABLE OBSERVATIONS
	4M	K	4	NO REMARKABLE OBSERVATIONS
	5M	K	4	NO REMARKABLE OBSERVATIONS
	6 M	K	4	NO REMARKABLE OBSERVATIONS
	7 F	K	4	NO REMARKABLE OBSERVATIONS
	8F	ĸ	4	NO REMARKABLE OBSERVATIONS
	9F	K	4	NO REMARKABLE OBSERVATIONS
	10F	K	4	NO REMARKABLE OBSERVATIONS
	11F	K	4	NO REMARKABLE OBSERVATIONS
	12F	K	4	NO REMARKABLE OBSERVATIONS
	13F	K	4	NO REMARKABLE OBSERVATIONS
	14F	K	4	NO REMARKABLE OBSERVATIONS
1552	1M	K	4	NO REMARKABLE OBSERVATIONS
	2M	K	4	NO REMARKABLE OBSERVATIONS
	3M	K.	4	NO REMARKABLÉ OBSERVATIONS
	4M	ĸ	4	NO REMARKABLE OBSERVATIONS
	5F	K	4	NO REMARKABLE OBSERVATIONS
	6F	ĸ	4	NO REMARKABLE OBSERVATIONS
	7 F	ĸ	4	NO REMARKABLE OBSERVATIONS
	8F	K	4	NO REMARKABLE OBSERVATIONS
	9 F	K	4 .	NO REMARKABLE OBSERVATIONS
	10F	ĸ	4	NO REMARKABLE OBSERVATIONS
	11M	K	4	NO REMARKABLE OBSERVATIONS
	12F	ĸ	4	NO REMARKABLE OBSERVATIONS
	13M	ĸ	4	NO REMARKABLE OBSERVATIONS

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX HH

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP 1	O PPM				
FEMALE#	PUP# S	TATUS	DAY ORGAN	OBSERVATION	
1553	1M 2M 3M 4M 5M 6M 7M 8F 9F 10F	K K K K K K K K K	4 4 4 4 4 4 4 4 4	NO REMARKABLE OBSI	ERVATIONS
	12F	K	4	NO REMARKABLE OBSE	ERVATIONS

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX HH

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP NECROPSY OBSERVATIONS

ROUP 2	900 PPM			INDIVIDUAL POP NECROPSI OBSERVATIONS
FEMALE#	PUP# S'	TATUS	DAY ORGAN	OBSERVATION
2542	1M	S	STOMACH	NO MILK IN STOMACH
	2M	K	4	NO REMARKABLE OBSERVATIONS
	3M	K	4	NO REMARKABLE OBSERVATIONS
	4 M	K	4	NO REMARKABLE OBSERVATIONS
	5M	ĸ	4	NO REMARKABLE OBSERVATIONS
	6M	К	4	NO REMARKABLE OBSERVATIONS
	7M	ĸ	4	NO REMARKABLE OBSERVATIONS
	8F	K	4	NO REMARKABLE OBSERVATIONS
	9F	K	4	NO REMARKABLE OBSERVATIONS
	10F	ĸ	4	NO REMARKABLE OBSERVATIONS
	11F	K	4	NO REMARKABLE OBSERVATIONS
	12F	K	4	NO REMARKABLE OBSERVATIONS
	13F	K	4	NO REMARKABLE OBSERVATIONS
	15F	K	4	NO REMARKABLE OBSERVATIONS
2543	1M	ĸ	4	NO REMARKABLE OBSERVATIONS
	2M	ĸ	4	NO REMARKABLE OBSERVATIONS
	3M	K	4	NO REMARKABLE OBSERVATIONS
	4M	ĸ	4	NO REMARKABLE OBSERVATIONS
	5M	K	4	NO REMARKABLE OBSERVATIONS
	6M	K	4	NO REMARKABLE OBSERVATIONS
	7M	ĸ	4	NO REMARKABLE OBSERVATIONS
	MS	ĸ	4	NO REMARKABLE OBSERVATIONS
	9 F	K	4	NO REMARKABLE OBSERVATIONS
	10F	K	4	NO REMARKABLE OBSERVATIONS
	11F	K	4	NO REMARKABLE OBSERVATIONS
	12F	K	4	NO REMARKABLE OBSERVATIONS
	13F	K	4	NO REMARKABLE OBSERVATIONS
	14F	K	4	NO REMARKABLE OBSERVATIONS
	15F	ĸ	4	NO REMARKABLE OBSERVATIONS

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX HH

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP 2	900 PPM			INDIVIDUAL TO: NECKOTOT OBSERVATIONS
FEMALE#	PUP# S	TATUS	DAY ORGAN	OBSERVATION
2544	1M	K	4	NO REMARKABLE OBSERVATIONS
	2M	ĸ	4	NO REMARKABLE OBSERVATIONS
	3M	К	4	NO REMARKABLE OBSERVATIONS
	4M	K	4	NO REMARKABLE OBSERVATIONS
	5M	K	4	NO REMARKABLE OBSERVATIONS
	6M	ĸ	4	NO REMARKABLE OBSERVATIONS
	7F	K	4	NO REMARKABLE OBSERVATIONS
	8F	K	4	NO REMARKABLE OBSERVATIONS
	9 F	K	<u>4</u>	NO REMARKABLE OBSERVATIONS
	10F	ĸ	4	NO REMARKABLE OBSERVATIONS
	11F	K	<u>4</u>	NO REMARKABLE OBSERVATIONS
	12F	K	4	NO REMARKABLE OBSERVATIONS
	13F	K	4	NO REMARKABLE OBSERVATIONS
	14F	ĸ	4	NO REMARKABLE OBSERVATIONS
	15F	K	4	NO REMARKABLE OBSERVATIONS
	16F	ĸ	4	NO REMARKABLE OBSERVATIONS
	17F	ĸ	4	NO REMARKABLE OBSERVATIONS
	18F	K	4	NO REMARKABLE OBSERVATIONS
2545	1M	K	4	NO REMARKABLE OBSERVATIONS
	2M	K	4	NO REMARKABLE OBSERVATIONS
	3M	K	4	NO REMARKABLE OBSERVATIONS
	4M	ĸ	4	NO REMARKABLE OBSERVATIONS
	5M	K	4	NO REMARKABLE OBSERVATIONS
	6M	к	4	NO REMARKABLE OBSERVATIONS
	7F	K	4	NO REMARKABLE OBSERVATIONS
	8F	ĸ	4	NO REMARKABLE OBSERVATIONS
	9F	ĸ	4	NO REMARKABLE OBSERVATIONS
	10F	ĸ	4	NO REMARKABLE OBSERVATIONS
	11F	K	4	NO REMARKABLE OBSERVATIONS
	12F	ĸ	4	NO REMARKABLE OBSERVATIONS
	13F	K	4	NO REMARKABLE OBSERVATIONS
	14F	ĸ	4	NO REMARKABLE OBSERVATIONS
		_ -,		

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX HH

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP NECROPSY OBSERVATIONS

FEMALE#	DIID# C	פוזית מיו	DAY ORGAN	OBSERVATION
				OBODIVATION
2546	1M	K	4	NO REMARKABLE OBSERVATIONS
2340	2M	K	4	NO REMARKABLE OBSERVATIONS
	3M	ĸ	4	NO REMARKABLE OBSERVATIONS
	4M	ĸ	4	NO REMARKABLE OBSERVATIONS
	5M	K	4	NO REMARKABLE OBSERVATIONS
	6M	ĸ	4	NO REMARKABLE OBSERVATIONS
	7M	К	4	NO REMARKABLE OBSERVATIONS
	8M	K	4	NO REMARKABLE OBSERVATIONS
	9M	к	4	NO REMARKABLE OBSERVATIONS
	10M	к	4	NO REMARKABLE OBSERVATIONS
	11F	ĸ	4	NO REMARKABLE OBSERVATIONS
	12F	ĸ	4	NO REMARKABLE OBSERVATIONS
	13F	K	4	NO REMARKABLE OBSERVATIONS
	14F	K	4 LIMBS	EDEMA
				LEFT FORELIMB WITH TAN SCAB
	15F	K	4	NO REMARKABLE OBSERVATIONS
2547	1M	ĸ	4	NO REMARKABLE OBSERVATIONS
	2M	D	1 STOMACH	NO MILK IN STOMACH
			LUNGS	LUNG FLOATATION TEST - FOUND DEAD
	3M	K	. 4	NO REMARKABLE OBSERVATIONS
	4M	K	4	NO REMARKABLE OBSERVATIONS
	5M	ĸ	4	NO REMARKABLE OBSERVATIONS
	6M	ĸ	4	NO REMARKABLE OBSERVATIONS
	7M	K	4	NO REMARKABLE OBSERVATIONS
	M8	K	4	NO REMARKABLE OBSERVATIONS
	9F	K	4	NO REMARKABLE OBSERVATIONS
	10F	K	4	NO REMARKABLE OBSERVATIONS
	11F	K	4	NO REMARKABLE OBSERVATIONS
	12F	ĸ	4	NO REMARKABLE OBSERVATIONS
	13F	K	4	NO REMARKABLE OBSERVATIONS
	14F	K	4	NO REMARKABLE OBSERVATIONS
	· 15F	K	4	NO REMARKABLE OBSERVATIONS

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX HH

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP 2	900 PPM			INDIVIDUAL FOF INSCROPSI OBSERVATIONS
FEMALE#	PUP# S	TATUS	DAY ORGAN	OBSERVATION
2547	(CONTINUE	D)		
	16F	K	4	NO REMARKABLE OBSERVATIONS
2548	1M	ĸ	4	NO REMARKABLE OBSERVATIONS
	2M	K	4	NO REMARKABLE OBSERVATIONS
	3M	ĸ	4	NO REMARKABLE OBSERVATIONS
	4M	K	4	NO REMARKABLE OBSERVATIONS
	5M	K	4	NO REMARKABLE OBSERVATIONS
	6M	K	4	NO REMARKABLE OBSERVATIONS
	7M	K	4	NO REMARKABLE OBSERVATIONS
	M8	K	4	NO REMARKABLE OBSERVATIONS
	9F	K	4	NO REMARKABLE OBSERVATIONS
	10F	K	4	NO REMARKABLE OBSERVATIONS
	11F	K	4	NO REMARKABLE OBSERVATIONS
	12F	K	4	NO REMARKABLE OBSERVATIONS
	13F	K	4	NO REMARKABLE OBSERVATIONS
	14F	K	4	NO REMARKABLE OBSERVATIONS
	15F	K	4	NO REMARKABLE OBSERVATIONS
	16F	K	4	NO REMARKABLE OBSERVATIONS
	17F	K	4	NO REMARKABLE OBSERVATIONS
2549	1F	D	0 LUNGS	LUNG FLOATATION TEST - FOUND DEAD
			STOMACH	NO MILK IN STOMACH
	2M	K	4	NO REMARKABLE OBSERVATIONS
	3M	К	4	NO REMARKABLE OBSERVATIONS
	4M	K	4	NO REMARKABLE OBSERVATIONS
	5M	K	4	NO REMARKABLE OBSERVATIONS
	6M	K	4	NO REMARKABLE OBSERVATIONS
	7M	K	4	NO REMARKABLE OBSERVATIONS
	8M	K	4	NO REMARKABLE OBSERVATIONS
	10F	K	4	NO REMARKABLE OBSERVATIONS
	11F	ĸ	4	NO REMARKABLE OBSERVATIONS
	12F	K	4	NO REMARKABLE OBSERVATIONS
	13F	K	4	NO REMARKABLE OBSERVATIONS

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX HH

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP NECROPSY OBSERVATIONS

PEMALR# PUP# STATUS DAY ORGAN	GROUP 2	900 PPM					
14F	FEMALE#	PUP# S	TATUS	DAY ORGAN	OBSE	RVATION	
15F	2549	(CONTINUE	 D)				***************************************
15F				4	NO REM	ARKABLE OF	BSERVATIONS
16F		15F			NO REM	ARKABLE OF	BSERVATIONS
3M		16F					
4M	2550	1M	к	4	NO REM	ARKABLE OF	BSERVATIONS
SM		3M	ĸ	4	NO REM	ARKABLE OF	BSERVATIONS
6M K 4 NO REMARKABLE OBSERVATIONS 8M K 4 NO REMARKABLE OSSERVATIONS 9F K 4 NO REMARKABLE OSSERVATIONS 10F K 4 NO REMARKABLE OSSERVATIONS 11F K 4 NO REMARKABLE OSSERVATIONS 11F K 4 NO REMARKABLE OSSERVATIONS 12F K 4 NO REMARKABLE OSSERVATIONS 13F K 4 NO REMARKABLE OSSERVATIONS 14F K 4 NO REMARKABLE OSSERVATIONS 15F K 4 NO REMARKABLE OSSERVATIONS 16F K 4 NO REMARKABLE OSSERVATIONS 16F K 4 NO REMARKABLE OSSERVATIONS 2551 1M K 4 NO REMARKABLE OSSERVATIONS 2551 1M K 4 NO REMARKABLE OSSERVATIONS 3M K 4 NO REMARKABLE OSSERVATIONS 4M K 4 NO REMARKABLE OSSERVATIONS 5M K 4 NO REMARKABLE OSSERVATIONS 6M REMARKABLE OSSERVATIONS		4M	ĸ	4	NO REM	ARKABLE OF	BSERVATIONS
7M		5M	ĸ	4	NO REM	ARKABLE OF	BSERVATIONS
SM		6M		4	NO REM	ARKABLE OF	BSERVATIONS
9F K 4 NO REMARKABLE OBSERVATIONS 11F K 4 NO REMARKABLE OBSERVATIONS 11F K 4 NO REMARKABLE OBSERVATIONS 11F K 4 NO REMARKABLE OBSERVATIONS 13F K 4 NO REMARKABLE OBSERVATIONS 13F K 4 NO REMARKABLE OBSERVATIONS 14F K 4 NO REMARKABLE OBSERVATIONS 15F K 4 NO REMARKABLE OBSERVATIONS 16F K 4 NO REMARKABLE OBSERVATIONS 2551 1M K 4 NO REMARKABLE OBSERVATIONS 2551 1M K 4 NO REMARKABLE OBSERVATIONS 26 N K 4 NO REMARKABLE OBSERVATIONS 27 N K 4 NO REMARKABLE OBSERVATIONS 28 N K 4 NO REMARKABLE OBSERVATIONS 29 N K 4 NO REMARKABLE OBSERVATIONS 29 N K 4 NO REMARKABLE OBSERVATIONS 20 N R 4 NO REMARKABLE OBSERVATIONS 20 N R 4 NO REMARKABLE OBSERVATIONS 20 N R 4 NO REMARKABLE OBSERVATIONS 21 N R 4 NO REMARKABLE OBSERVATIONS 22 N R 4 NO REMARKABLE OBSERVATIONS 23 N R 4 NO REMARKABLE OBSERVATIONS 24 N N REMARKABLE OBSERVATIONS 25 N R 4 NO REMARKABLE OBSERVATIONS 25 N R 4 NO REMARKABLE OBSERVATIONS 26 N R 4 NO REMARKABLE OBSERVATIONS 27 N R 4 NO REMARKABLE OBSERVATIONS 28 N R 4 NO REMARKABLE OBSERVATIONS 38 N R 4 NO REMARKABLE OBSERVATIONS		7M	ĸ	4	NO REM	ARKABLE OF	BSERVATIONS
10F		8M		4	NO REM	ARKABLE OF	BSERVATIONS
11F		9F	ĸ	4	NO REM	ARKABLE OF	BSERVATIONS
12F		10F	K	4	NO REM	ARKABLE OF	BSERVATIONS
13F		11F	K	4	NO REM	ARKABLE OF	BSERVATIONS
14F K 4 NO REMARKABLE OBSERVATIONS 15F K 4 NO REMARKABLE OBSERVATIONS 16F K 4 NO REMARKABLE OBSERVATIONS 2551		12F		4	NO REM	ARKABLE OF	BSERVATIONS
15F K 4 NO REMARKABLE OBSERVATIONS 16F K 4 NO REMARKABLE OBSERVATIONS 2551 1M K 4 NO REMARKABLE OBSERVATIONS 2M K 4 NO REMARKABLE OBSERVATIONS 3M K 4 NO REMARKABLE OBSERVATIONS 4M K 4 NO REMARKABLE OBSERVATIONS 5M K 4 NO REMARKABLE OBSERVATIONS 5M K 4 NO REMARKABLE OBSERVATIONS 6M K 4 NO REMARKABLE OBSERVATIONS 7M K 4 NO REMARKABLE OBSERVATIONS 8M K 4 NO REMARKABLE OBSERVATIONS 9M K 4 NO REMARKABLE OBSERVATIONS 10F K 4 NO REMARKABLE OBSERVATIONS 11F K 4 NO REMARKABLE OBSERVATIONS 12F K 4 NO REMARKABLE OBSERVATIONS		13F	K	4	NO REM	ARKABLE OF	BSERVATIONS
16F K 4 NO REMARKABLE OBSERVATIONS 2M K 4 NO REMARKABLE OBSERVATIONS 2M K 4 NO REMARKABLE OBSERVATIONS 3M K 4 NO REMARKABLE OBSERVATIONS 4M K 4 NO REMARKABLE OBSERVATIONS 5M K 4 NO REMARKABLE OBSERVATIONS 6M K 4 NO REMARKABLE OBSERVATIONS 6M K 4 NO REMARKABLE OBSERVATIONS 7M K 4 NO REMARKABLE OBSERVATIONS 7M K 4 NO REMARKABLE OBSERVATIONS 8M K 4 NO REMARKABLE OBSERVATIONS 9M K 4 NO REMARKABLE OBSERVATIONS 10F K 4 NO REMARKABLE OBSERVATIONS 11F K 4 NO REMARKABLE OBSERVATIONS 12F K 4 NO REMARKABLE OBSERVATIONS		14F	K	4	NO REM	ARKABLE OF	BSERVATIONS
2551 1M K 4 NO REMARKABLE OBSERVATIONS 2M K 4 NO REMARKABLE OBSERVATIONS 3M K 4 NO REMARKABLE OBSERVATIONS 4M K 4 NO REMARKABLE OBSERVATIONS 5M K 4 NO REMARKABLE OBSERVATIONS 6M K 4 NO REMARKABLE OBSERVATIONS 6M K 4 NO REMARKABLE OBSERVATIONS 7M K 4 NO REMARKABLE OBSERVATIONS 8M K 4 NO REMARKABLE OBSERVATIONS 9M K 4 NO REMARKABLE OBSERVATIONS 10F K 4 NO REMARKABLE OBSERVATIONS 11F K 4 NO REMARKABLE OBSERVATIONS 12F K 4 NO REMARKABLE OBSERVATIONS		15F	ĸ	4	NO REM	ARKABLE OF	BSERVATIONS
2M K 4 NO REMARKABLE OBSERVATIONS 3M K 4 NO REMARKABLE OBSERVATIONS 4M K 4 NO REMARKABLE OBSERVATIONS 5M K 4 NO REMARKABLE OBSERVATIONS 6M K 4 NO REMARKABLE OBSERVATIONS 7M K 4 NO REMARKABLE OBSERVATIONS 8M K 4 NO REMARKABLE OBSERVATIONS 10F K 4 NO REMARKABLE OBSERVATIONS 11F K 4 NO REMARKABLE OBSERVATIONS 12F K 4 NO REMARKABLE OBSERVATIONS		16F	K	4	NO REM	ARKABLE OF	BSERVATIONS
3M K 4 NO REMARKABLE OBSERVATIONS 4M K 4 NO REMARKABLE OBSERVATIONS 5M K 4 NO REMARKABLE OBSERVATIONS 6M K 4 NO REMARKABLE OBSERVATIONS 7M K 4 NO REMARKABLE OBSERVATIONS 8M K 4 NO REMARKABLE OBSERVATIONS 10F K 4 NO REMARKABLE OBSERVATIONS 11F K 4 NO REMARKABLE OBSERVATIONS 12F K 4 NO REMARKABLE OBSERVATIONS	2551	1M		4	NO REM	ARKABLE OF	BSERVATIONS
4M K 4 NO REMARKABLE OBSERVATIONS 5M K 4 NO REMARKABLE OBSERVATIONS 6M K 4 NO REMARKABLE OBSERVATIONS 7M K 4 NO REMARKABLE OBSERVATIONS 8M K 4 NO REMARKABLE OBSERVATIONS 9M K 4 NO REMARKABLE OBSERVATIONS 10F K 4 NO REMARKABLE OBSERVATIONS 11F K 4 NO REMARKABLE OBSERVATIONS 12F K 4 NO REMARKABLE OBSERVATIONS					ſ		
5M K 4 NO REMARKABLE OBSERVATIONS 6M K 4 NO REMARKABLE OBSERVATIONS 7M K 4 NO REMARKABLE OBSERVATIONS 8M K 4 NO REMARKABLE OBSERVATIONS 9M K 4 NO REMARKABLE OBSERVATIONS 10F K 4 NO REMARKABLE OBSERVATIONS 11F K 4 NO REMARKABLE OBSERVATIONS 12F K 4 NO REMARKABLE OBSERVATIONS REMARKABLE OBSERVATIONS		3M			NO REM	ARKABLE OF	BSERVATIONS
6M K 4 NO REMARKABLE OBSERVATIONS 7M K 4 NO REMARKABLE OBSERVATIONS 8M K 4 NO REMARKABLE OBSERVATIONS 9M K 4 NO REMARKABLE OBSERVATIONS 10F K 4 NO REMARKABLE OBSERVATIONS 11F K 4 NO REMARKABLE OBSERVATIONS 12F K 4 NO REMARKABLE OBSERVATIONS 12F K 4 NO REMARKABLE OBSERVATIONS		4M		4	no rem	ARKABLE OF	BSERVATIONS
7M K 4 NO REMARKABLE OBSERVATIONS 8M K 4 NO REMARKABLE OBSERVATIONS 9M K 4 NO REMARKABLE OBSERVATIONS 10F K 4 NO REMARKABLE OBSERVATIONS 11F K 4 NO REMARKABLE OBSERVATIONS 12F K 4 NO REMARKABLE OBSERVATIONS		5M		4	NO REM	ARKABLE OF	BSERVATIONS
8M K 4 NO REMARKABLE OBSERVATIONS 9M K 4 NO REMARKABLE OBSERVATIONS 10F K 4 NO REMARKABLE OBSERVATIONS 11F K 4 NO REMARKABLE OBSERVATIONS 12F K 4 NO REMARKABLE OBSERVATIONS		6M	ĸ	4	NO REM	ARKABLE OF	BSERVATIONS
9M K 4 NO REMARKABLE OBSERVATIONS 10F K 4 NO REMARKABLE OBSERVATIONS 11F K 4 NO REMARKABLE OBSERVATIONS 12F K 4 NO REMARKABLE OBSERVATIONS		7M	K	4			
10F K 4 NO REMARKABLE OBSERVATIONS 11F K 4 NO REMARKABLE OBSERVATIONS 12F K 4 NO REMARKABLE OBSERVATIONS		8M	ĸ	4	NO REM	ARKABLE OF	BSERVATIONS
11F K 4 NO REMARKABLE OBSERVATIONS 12F K 4 NO REMARKABLE OBSERVATIONS		9M	K	4	NO REM	ARKABLE OF	BSERVATIONS
12F K 4 NO REMARKABLE OBSERVATIONS		10F	K	4	NO REM	ARKABLE OF	BSERVATIONS
		11F	K	4			
13F K 4 NO REMARKABLE OBSERVATIONS		12F			i i		
		13F	K	4	NO REM	RKABLE OF	BSERVATIONS

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX HH

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP 2	900 PPM			INDIVIDUAL FOR NECKORSI OBSERVATIONS
FEMALE#	PUP# S	 TATUS	DAY ORGAN	OBSERVATION
	//			
2551	(CONTINUE			NO DEMONSTRATE OPPORTUNITIONS
	14F	K	4	NO REMARKABLE OBSERVATIONS
	15F	K	4	NO REMARKABLE OBSERVATIONS
	16F	ĸ	4	NO REMARKABLE OBSERVATIONS
2552	1M	к	4	NO REMARKABLE OBSERVATIONS
	2M	K	4	NO REMARKABLE OBSERVATIONS
	3M	K	4	NO REMARKABLE OBSERVATIONS
	4 M	K	4	NO REMARKABLE OBSERVATIONS
	5M	K	4	NO REMARKABLE OBSERVATIONS
	6M	K	4	NO REMARKABLE OBSERVATIONS
	7M	ĸ	4	NO REMARKABLE OBSERVATIONS
	8M	K	4	NO REMARKABLE OBSERVATIONS
	9 F	ĸ	4	NO REMARKABLE OBSERVATIONS
	10F	K	4	NO REMARKABLE OBSERVATIONS
	11F	K	4	NO REMARKABLE OBSERVATIONS
	12F	K	4	NO REMARKABLE OBSERVATIONS
	13F	K	4	NO REMARKABLE OBSERVATIONS
	14F	K	4	NO REMARKABLE OBSERVATIONS
	15F	к	4	NO REMARKABLE OBSERVATIONS
2553	1M	к	4	NO REMARKABLE OBSERVATIONS
	2M	ĸ	4	NO REMARKABLE OBSERVATIONS
	3M	ĸ	4	NO REMARKABLE OBSERVATIONS
	4M	ĸ	4	NO REMARKABLE OBSERVATIONS
	5M	ĸ	4	NO REMARKABLE OBSERVATIONS
	6F	K	4	NO REMARKABLE OBSERVATIONS
	7F	ĸ	4	NO REMARKABLE OBSERVATIONS
	8F	ĸ	4	NO REMARKABLE OBSERVATIONS
	9F	ĸ	4	NO REMARKABLE OBSERVATIONS
	10F	ĸ	4	NO REMARKABLE OBSERVATIONS
	11F	ĸ	4	NO REMARKABLE OBSERVATIONS
	12F	ĸ	4	NO REMARKABLE OBSERVATIONS
	13F	К	4	NO REMARKABLE OBSERVATIONS

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX HH

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP 2	900 PPM			
FEMALE#	PUP# SI	TATUS	DAY ORGAN	OBSERVATION
2553	(CONTINUED)		
	14F	K	4	NO REMARKABLE OBSERVATIONS
	15F	ĸ	4	NO REMARKABLE OBSERVATIONS
CEN CODEC		 	lo II-IIndo	

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX HH

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP 3	3000 PPM			INDIVIDURAL COL MIGROTOL ODDINANZONO
FEMALE#	PUP# S	ratus	DAY ORGAN	OBSERVATION
				<i></i>
3542	1M		4	NO REMARKABLE OBSERVATIONS
	2M	K	4	NO REMARKABLE OBSERVATIONS
	ЗМ	K	4	NO REMARKABLE OBSERVATIONS
	4M	ĸ	4	NO REMARKABLE OBSERVATIONS
	5M	K	4	NO REMARKABLE OBSERVATIONS
	бМ	K	4	NO REMARKABLE OBSERVATIONS
	7M	ĸ	4	NO REMARKABLE OBSERVATIONS
	8M	K	4	NO REMARKABLE OBSERVATIONS
	9F	K	4	NO REMARKABLE OBSERVATIONS
	10F	K	4	NO REMARKABLE OBSERVATIONS
	11F	ĸ	4	NO REMARKABLE OBSERVATIONS
	12F	K	4	NO REMARKABLE OBSERVATIONS
	13F	K	4	NO REMARKABLE OBSERVATIONS
	14F	ĸ	4	NO REMARKABLE OBSERVATIONS
	15F	ĸ	4	NO REMARKABLE OBSERVATIONS
	16F	K	4	NO REMARKABLE OBSERVATIONS
	17F	K	4	NO REMARKABLE OBSERVATIONS
3543	1M	K	4	NO REMARKABLE OBSERVATIONS
	2M	K	4	NO REMARKABLE OBSERVATIONS
	3M	ĸ	4	NO REMARKABLE OBSERVATIONS
	4M	K	4	NO REMARKABLE OBSERVATIONS
	5M	K	4	NO REMARKABLE OBSERVATIONS
	6M	K	4	NO REMARKABLE OBSERVATIONS
	7 F	K	4	NO REMARKABLE OBSERVATIONS
	8F	ĸ	4	NO REMARKABLE OBSERVATIONS
	9 F	ĸ	4	NO REMARKABLE OBSERVATIONS
	10F	ĸ	4	NO REMARKABLE OBSERVATIONS
	11F	ĸ	4	NO REMARKABLE OBSERVATIONS
	12F	ĸ	4	NO REMARKABLE OBSERVATIONS

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX HH

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY
INHALATION EXPOSURES

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP 3	3000 PPM			
PEMALE#	PUP# S	TATUS	DAY ORGAN	OBSERVATION
3544	1F	D	0 LUNGS STOMACH	LUNG FLOATATION TEST - FOUND DEAD NO MILK IN STOMACH
	2M	к	4	NO MILK IN SIGNACH NO REMARKABLE OBSERVATIONS
	3M	ĸ	4	NO REMARKABLE OBSERVATIONS
	4M	ĸ	4	NO REMARKABLE OBSERVATIONS
	5M	ĸ	4	NO REMARKABLE OBSERVATIONS
	6M	ĸ	4	NO REMARKABLE OBSERVATIONS
	7M	ĸ	4	NO REMARKABLE OBSERVATIONS
	8M	K	4	NO REMARKABLE OBSERVATIONS
	9M	ĸ	4	NO REMARKABLE OBSERVATIONS
	10M	K	4	NO REMARKABLE OBSERVATIONS
	11F	ĸ	4	NO REMARKABLE OBSERVATIONS
	12F	ĸ	4	NO REMARKABLE OBSERVATIONS
	13F	к .	4	NO REMARKABLE OBSERVATIONS
	14F	ĸ	4	NO REMARKABLE OBSERVATIONS
	15F	ĸ	4	NO REMARKABLE OBSERVATIONS
	16F	K	4	NO REMARKABLE OBSERVATIONS
3545	1M	к	4	NO REMARKABLE OBSERVATIONS
	2M	κ	4	NO REMARKABLE OBSERVATIONS
	ЗМ	ĸ	4	NO REMARKABLE OBSERVATIONS
	4M	K	4	NO REMARKABLE OBSERVATIONS
	5M	ĸ	4	NO REMARKABLE OBSERVATIONS
	6M	K	4	NO REMARKABLE OBSERVATIONS
	7M	K	4	NO REMARKABLE OBSERVATIONS
	8F	K	4	NO REMARKABLE OBSERVATIONS
	9F	K	4	NO REMARKABLE OBSERVATIONS
	11F	K	4	NO REMARKABLE OBSERVATIONS
	12F	K	4	NO REMARKABLE OBSERVATIONS
	13F	ĸ	4	NO REMARKABLE OBSERVATIONS

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX HH

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP NECROPSY OBSERVATIONS

Temple# Pup# Status Day organ	GROUP 3	3000 PPM			
NO MILK IN STOMACH	FEMALE#	PUP# STATUS DAY ORGAN			OBSERVATION
2M	3546	1F	D	0 LUNGS	LUNG FLOATATION TEST - FOUND DEAD
3M				STOMACH	
4M K 4 NO REMARKABLE OBSERVATIONS 6M K 4 NO REMARKABLE OBSERVATIONS 6M K 4 NO REMARKABLE OBSERVATIONS 7M K 4 NO REMARKABLE OBSERVATIONS 8F K 4 NO REMARKABLE OBSERVATIONS 8F K 4 NO REMARKABLE OBSERVATIONS 8F K 4 NO REMARKABLE OBSERVATIONS 10F K 4 NO REMARKABLE OBSERVATIONS 11F K 5 NO REMARKABLE OBSERVATIONS 11F K 6 NO REMARKABLE O					
SM					
6M K 4 NO REMARKABLE OBSERVATIONS 8F K 4 NO REMARKABLE OBSERVATIONS 9F D 1 STOMACH NO MILK IN STOMACH 10F K 4 NO REMARKABLE OBSERVATIONS 11F K 4 NO REMARKABLE OBSERVATIONS 13F K 4 NO REMARKABLE OBSERVATIONS 14F K 4 NO REMARKABLE OBSERVATIONS 15F K 4 NO REMARKABLE OBSERVATIONS 15F K 4 NO REMARKABLE OBSERVATIONS 3547					
7M					
8					
9F D					
LUNGS					
10F K 4 NO REMARKABLE OBSERVATIONS 11F K 4 NO REMARKABLE OBSERVATIONS 12F K 4 NO REMARKABLE OBSERVATIONS 13F K 4 NO REMARKABLE OBSERVATIONS 14F K 4 NO REMARKABLE OBSERVATIONS 14F K 4 NO REMARKABLE OBSERVATIONS 15F K 4 NO REMARKABLE OBSERVATIONS 3547 1M K 4 NO REMARKABLE OBSERVATIONS 2M K 4 NO REMARKABLE OBSERVATIONS 3M K 4 NO REMARKABLE OBSERVATIONS 3M K 4 NO REMARKABLE OBSERVATIONS 5M K 4 NO REMARKABLE OBSERVATIONS 6M K 4 NO REMARKABLE OBSERVATIONS 7F K 4 NO REMARKABLE OBSERVATIONS 9F K 4 NO REMARKABLE OBSERVATIONS 10F K 4 NO REMARKABLE OBSERVATIONS 11F K 4 NO REMARKABLE OBSERVATIONS 11F K 4 NO REMARKABLE OBSERVATIONS 12F K 4 NO REMARKABLE OBSERVATIONS 13F K 4 NO REMARKABLE OBSERVATIONS		9F	D	1 STOMACH	
11F				LUNGS	
12F		10F		4	
13F		11F	K	4	NO REMARKABLE OBSERVATIONS
14F K 4 NO REMARKABLE OBSERVATIONS 3547 1M K 4 NO REMARKABLE OBSERVATIONS 2M K 4 NO REMARKABLE OBSERVATIONS 3M K 4 NO REMARKABLE OBSERVATIONS 4M K 4 NO REMARKABLE OBSERVATIONS 5M K 4 NO REMARKABLE OBSERVATIONS 6M K 4 NO REMARKABLE OBSERVATIONS 7F K 4 NO REMARKABLE OBSERVATIONS 8F K 4 NO REMARKABLE OBSERVATIONS 10F K 4 NO REMARKABLE OBSERVATIONS 11F K 4 NO REMARKABLE OBSERVATIONS 12F K 4 NO REMARKABLE OBSERVATIONS 13F K 4 NO REMARKABLE OBSERVATIONS		12F	K	4	NO REMARKABLE OBSERVATIONS
15F K 4 NO REMARKABLE OBSERVATIONS 3547 1M K 4 NO REMARKABLE OBSERVATIONS 2M K 4 NO REMARKABLE OBSERVATIONS 3M K 4 NO REMARKABLE OBSERVATIONS 4M K 4 NO REMARKABLE OBSERVATIONS 5M K 4 NO REMARKABLE OBSERVATIONS 6M K 4 NO REMARKABLE OBSERVATIONS 6M K 4 NO REMARKABLE OBSERVATIONS 7F K 4 NO REMARKABLE OBSERVATIONS 8F K 4 NO REMARKABLE OBSERVATIONS 9F K 4 NO REMARKABLE OBSERVATIONS 10F K 4 NO REMARKABLE OBSERVATIONS 11F K 4 NO REMARKABLE OBSERVATIONS 12F K 4 NO REMARKABLE OBSERVATIONS 12F K 4 NO REMARKABLE OBSERVATIONS 13F K 4 NO REMARKABLE OBSERVATIONS 0SERVATIONS 0SERVATIONS 0SERVATIONS 0SERVATIONS 0SERVATIONS 0SERVATIONS 0SERVATIONS 0SERVATIONS 0SERVATIONS		13F	K	4	NO REMARKABLE OBSERVATIONS
1M		14F	K	4	NO REMARKABLE OBSERVATIONS
2M K 4 NO REMARKABLE OBSERVATIONS 3M K 4 NO REMARKABLE OBSERVATIONS 4M K 4 NO REMARKABLE OBSERVATIONS 5M K 4 NO REMARKABLE OBSERVATIONS 6M K 4 NO REMARKABLE OBSERVATIONS 7F K 4 NO REMARKABLE OBSERVATIONS 9F K 4 NO REMARKABLE OBSERVATIONS 10F K 4 NO REMARKABLE OBSERVATIONS 11F K 4 NO REMARKABLE OBSERVATIONS 12F K 4 NO REMARKABLE OBSERVATIONS 13F K 4 NO REMARKABLE OBSERVATIONS		15F	K	4	NO REMARKABLE OBSERVATIONS
3M K 4 NO REMARKABLE OBSERVATIONS 4M K 4 NO REMARKABLE OBSERVATIONS 5M K 4 NO REMARKABLE OBSERVATIONS 6M K 4 NO REMARKABLE OBSERVATIONS 7F K 4 NO REMARKABLE OBSERVATIONS 9F K 4 NO REMARKABLE OBSERVATIONS 10F K 4 NO REMARKABLE OBSERVATIONS 11F K 4 NO REMARKABLE OBSERVATIONS 12F K 4 NO REMARKABLE OBSERVATIONS 13F K 4 NO REMARKABLE OBSERVATIONS	3547	1M	K	4	NO REMARKABLE OBSERVATIONS
4M K 4 NO REMARKABLE OBSERVATIONS 5M K 4 NO REMARKABLE OBSERVATIONS 6M K 4 NO REMARKABLE OBSERVATIONS 7F K 4 NO REMARKABLE OBSERVATIONS 8F K 4 NO REMARKABLE OBSERVATIONS 10F K 4 NO REMARKABLE OBSERVATIONS 11F K 4 NO REMARKABLE OBSERVATIONS 12F K 4 NO REMARKABLE OBSERVATIONS 13F K 4 NO REMARKABLE OBSERVATIONS		2M	K	4	NO REMARKABLE OBSERVATIONS
5M K 4 NO REMARKABLE OBSERVATIONS 6M K 4 NO REMARKABLE OBSERVATIONS 7F K 4 NO REMARKABLE OBSERVATIONS 8F K 4 NO REMARKABLE OBSERVATIONS 10F K 4 NO REMARKABLE OBSERVATIONS 11F K 4 NO REMARKABLE OBSERVATIONS 12F K 4 NO REMARKABLE OBSERVATIONS 13F K 4 NO REMARKABLE OBSERVATIONS		3M	K	4	NO REMARKABLE OBSERVATIONS
6M K 4 NO REMARKABLE OBSERVATIONS 7F K 4 NO REMARKABLE OBSERVATIONS 8F K 4 NO REMARKABLE OBSERVATIONS 10F K 4 NO REMARKABLE OBSERVATIONS 11F K 4 NO REMARKABLE OBSERVATIONS 12F K 4 NO REMARKABLE OBSERVATIONS 13F K 4 NO REMARKABLE OBSERVATIONS		4M	ĸ	4	NO REMARKABLE OBSERVATIONS
7F K 4 NO REMARKABLE OBSERVATIONS 8F K 4 NO REMARKABLE OBSERVATIONS 9F K 4 NO REMARKABLE OBSERVATIONS 10F K 4 NO REMARKABLE OBSERVATIONS 11F K 4 NO REMARKABLE OBSERVATIONS 12F K 4 NO REMARKABLE OBSERVATIONS 13F K 4 NO REMARKABLE OBSERVATIONS		5M	K	4	NO REMARKABLE OBSERVATIONS
8F K 4 NO REMARKABLE OBSERVATIONS 9F K 4 NO REMARKABLE OBSERVATIONS 10F K 4 NO REMARKABLE OBSERVATIONS 11F K 4 NO REMARKABLE OBSERVATIONS 12F K 4 NO REMARKABLE OBSERVATIONS 13F K 4 NO REMARKABLE OBSERVATIONS		6М	K	4	NO REMARKABLE OBSERVATIONS
9F K 4 NO REMARKABLE OBSERVATIONS 10F K 4 NO REMARKABLE OBSERVATIONS 11F K 4 NO REMARKABLE OBSERVATIONS 12F K 4 NO REMARKABLE OBSERVATIONS 13F K 4 NO REMARKABLE OBSERVATIONS		7F	K	4	NO REMARKABLE OBSERVATIONS
10F K 4 NO REMARKABLE OBSERVATIONS 11F K 4 NO REMARKABLE OBSERVATIONS 12F K 4 NO REMARKABLE OBSERVATIONS 13F K 4 NO REMARKABLE OBSERVATIONS		8F	K	4	NO REMARKABLE OBSERVATIONS
11F K 4 NO REMARKABLE OBSERVATIONS 12F K 4 NO REMARKABLE OBSERVATIONS 13F K 4 NO REMARKABLE OBSERVATIONS		9F	ĸ	4	NO REMARKABLE OBSERVATIONS
12F K 4 NO REMARKABLE OBSERVATIONS 13F K 4 NO REMARKABLE OBSERVATIONS		10F	ĸ	4	NO REMARKABLE OBSERVATIONS
13F K 4 NO REMARKABLE OBSERVATIONS		11F	K	4	NO REMARKABLE OBSERVATIONS
		12F	ĸ	4	NO REMARKABLE OBSERVATIONS
14F K 4 NO REMARKABLE OBSERVATIONS		13F	K	4	NO REMARKABLE OBSERVATIONS
		14F	ĸ	4	NO REMARKABLE OBSERVATIONS

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX HH

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP NECROPSY OBSERVATIONS

ROUP 3	3000 PPM	. .		
FEMALE#	PUP# ST	TATUS	DAY ORGAN	OBSERVATION
3548	1M		4	NO REMARKABLE OBSERVATIONS
	2M	ĸ	4	NO REMARKABLE OBSERVATIONS
	3M	K	4	NO REMARKABLE OBSERVATIONS
	4M	D	3	NO REMARKABLE OBSERVATIONS
	5M	K	4	NO REMARKABLE OBSERVATIONS
	6F	K	4	NO REMARKABLE OBSERVATIONS
	7 F	ĸ	4	NO REMARKABLE OBSERVATIONS
	8F	K	4	NO REMARKABLE OBSERVATIONS
	9 F	ĸ	4	NO REMARKABLE OBSERVATIONS
	10F	ĸ	4	NO REMARKABLE OBSERVATIONS
	11F	ĸ	4	NO REMARKABLE OBSERVATIONS
	13F	K	4	NO REMARKABLE OBSERVATIONS
	14F	ĸ	4	NO REMARKABLE OBSERVATIONS
	15F	ĸ	4	NO REMARKABLE OBSERVATIONS
3549	1M	к	4	NO REMARKABLE OBSERVATIONS
	2M	K	4	NO REMARKABLE OBSERVATIONS
	4M	K	4	NO REMARKABLE OBSERVATIONS
	5M	K	4	NO REMARKABLE OBSERVATIONS
	6M	ĸ	4	NO REMARKABLE OBSERVATIONS
	7M	K	4	NO REMARKABLE OBSERVATIONS
	8F	ĸ	4	NO REMARKABLE OBSERVATIONS
	9 F	K	4	NO REMARKABLE OBSERVATIONS
	10F	ĸ	4	NO REMARKABLE OBSERVATIONS
	11F	K	4	NO REMARKABLE OBSERVATIONS
	12F	K	4	NO REMARKABLE OBSERVATIONS
	13F	ĸ	4	NO REMARKABLE OBSERVATIONS
	14F	K	4	NO REMARKABLE OBSERVATIONS
	15F	ĸ	4	NO REMARKABLE OBSERVATIONS
	16F	ĸ	4	NO REMARKABLE OBSERVATIONS

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX HH

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP 3	3000 PPM			
FEMALE#	PUP# S	ratus	DAY ORGAN	OBSERVATION
3550	1M	K	4	NO REMARKABLE OBSERVATIONS
	2M	K	4	NO REMARKABLE OBSERVATIONS
	3M	K	4	NO REMARKABLE OBSERVATIONS
	4M	K	4	NO REMARKABLE OBSERVATIONS
	5M	K	4	NO REMARKABLE OBSERVATIONS
	6М	K	4	NO REMARKABLE OBSERVATIONS
	7M	K	4	NO REMARKABLE OBSERVATIONS
	8M	K	4	NO REMARKABLE OBSERVATIONS
	9M	K	4	NO REMARKABLE OBSERVATIONS
	10F	K	4	NO REMARKABLE OBSERVATIONS
	11F	K	4	NO REMARKABLE OBSERVATIONS
	12F	K	4	NO REMARKABLE OBSERVATIONS
	13F	K	4	NO REMARKABLE OBSERVATIONS
	14F	K	4	NO REMARKABLE OBSERVATIONS
3551	1F	s	LUNGS	LUNG FLOATATION TEST - STILLBORN
			STOMACH	NO MILK IN STOMACH
	2M	ĸ	4	NO REMARKABLE OBSERVATIONS
	3M	K	4	NO REMARKABLE OBSERVATIONS
	4M	K	4	NO REMARKABLE OBSERVATIONS
	5M	K	4	NO REMARKABLE OBSERVATIONS
	6M	K	4	NO REMARKABLE OBSERVATIONS
	7M	ĸ	4	NO REMARKABLE OBSERVATIONS
	8M	K	4	NO REMARKABLE OBSERVATIONS
	9M	K	4	NO REMARKABLE OBSERVATIONS
	10M	ĸ	4	NO REMARKABLE OBSERVATIONS
	11F	ĸ	4	NO REMARKABLE OBSERVATIONS
	12F	K	4	NO REMARKABLE OBSERVATIONS
	13F	K	4	NO REMARKABLE OBSERVATIONS
	14F	ĸ	4	NO REMARKABLE OBSERVATIONS
	15F	ĸ	4	NO REMARKABLE OBSERVATIONS
	16F	ĸ	4	NO REMARKABLE OBSERVATIONS

SEX CODES: M-Male, F=Female, U=Undetermined

PUP STATUS CODES: S-STILLBORN K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX HH

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP 3	3000 PPM			
FEMALE#	PUP# S	TATUS	DAY ORGAN	OBSERVATION
3552	1M	ĸ	4	NO REMARKABLE OBSERVATIONS
3552	2M	K	4 4	NO REMARKABLE OBSERVATIONS
	2M 3M	ĸ	4	NO REMARKABLE OBSERVATIONS NO REMARKABLE OBSERVATIONS
	4M	K	4	NO REMARKABLE OBSERVATIONS
	5M	ĸ	4	NO REMARKABLE OBSERVATIONS
	6M	ĸ	4	NO REMARKABLE OBSERVATIONS
	7M	ĸ	4	NO REMARKABLE OBSERVATIONS
	8M	ĸ	4	NO REMARKABLE OBSERVATIONS
	9M	ĸ	4	NO REMARKABLE OBSERVATIONS
	10M	к	4	NO REMARKABLE OBSERVATIONS
	11F	ĸ	4	NO REMARKABLE OBSERVATIONS
	12F	ĸ	4	NO REMARKABLE OBSERVATIONS
	13F	ĸ	4	NO REMARKABLE OBSERVATIONS
	14F	K	4	NO REMARKABLE OBSERVATIONS
	15F	ĸ	4	NO REMARKABLE OBSERVATIONS
3553	1M	к	4	NO REMARKABLE OBSERVATIONS
2000	2M	ĸ	4	NO REMARKABLE OBSERVATIONS
	3M	ĸ	4	NO REMARKABLE OBSERVATIONS
	4M	ĸ	4	NO REMARKABLE OBSERVATIONS
	5M	К	4	NO REMARKABLE OBSERVATIONS
	6M	ĸ	4	NO REMARKABLE OBSERVATIONS
	7M	ĸ	4	NO REMARKABLE OBSERVATIONS
	8M	к	4	NO REMARKABLE OBSERVATIONS
	9F	ĸ	4	NO REMARKABLE OBSERVATIONS
	10F	ĸ	4	NO REMARKABLE OBSERVATIONS
	11F	ĸ	4	NO REMARKABLE OBSERVATIONS
	12F	ĸ	4	NO REMARKABLE OBSERVATIONS
	13F	ĸ	4	NO REMARKABLE OBSERVATIONS
	14F	ĸ	4	NO REMARKABLE OBSERVATIONS
	15F	ĸ	4	NO REMARKABLE OBSERVATIONS
	16F	ĸ	4	NO REMARKABLE OBSERVATIONS
	17F	ĸ	4	NO REMARKABLE OBSERVATIONS

SEX CODES: M-Male, F=Female, U=Undetermined PUP STATUS CODES: K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

PUP STATUS CODES: K-SCHEDULED SACRIFICE

APPENDIX HH

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP 3 3000 PPM

FEMALE# PUP# STATUS DAY ORGAN OBSERVATION

3553 (CONTINUED)
18F K 4 NO REMARKABLE OBSERVATIONS

SEX CODES: M-Male, F=Female, U=Undetermined

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX HH

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP NECROPSY OBSERVATIONS

			DAY ORGAN	OBSERVATION
4542	ım	ĸ	4	NO REMARKABLE OBSERVATIONS
1512	2M	ĸ	4	NO REMARKABLE OBSERVATIONS
	3M	ĸ	4	NO REMARKABLE OBSERVATIONS
	4M	ĸ	4	NO REMARKABLE OBSERVATIONS
	5M	ĸ	4	NO REMARKABLE OBSERVATIONS
	6M	ĸ	4	NO REMARKABLE OBSERVATIONS
	7F	к	4	NO REMARKABLE OBSERVATIONS
	8F	ĸ	4	NO REMARKABLE OBSERVATIONS
	9F	ĸ	4	NO REMARKABLE OBSERVATIONS
	10F	ĸ	4	NO REMARKABLE OBSERVATIONS
	11F	ĸ	4	NO REMARKABLE OBSERVATIONS
	12F	ĸ	4	NO REMARKABLE OBSERVATIONS
	13F	ĸ	4	NO REMARKABLE OBSERVATIONS
	14F	ĸ	4	NO REMARKABLE OBSERVATIONS
	15F	ĸ	4	NO REMARKABLE OBSERVATIONS
4543	ıM	D	4 GROSS EXAM	AUTOLYSIS
	2M	ĸ	4	NO REMARKABLE OBSERVATIONS
	3M	ĸ	4 EXTERNAL EXAM	TIP OF TAIL MISSING
	4M	K	4	NO REMARKABLE OBSERVATIONS
	5M	K	4	NO REMARKABLE OBSERVATIONS
	6M	K	4 EXTERNAL EXAM	SCAB TOP OF HEAD
				EXTERNAL FINDING CONFIRMED
				0.6 CM IN DIAMETER, RED
	7M	K	4	NO REMARKABLE OBSERVATIONS
	8F	K	4	NO REMARKABLE OBSERVATIONS
	9F	ĸ	4	NO REMARKABLE OBSERVATIONS
	10F	ĸ	4	NO REMARKABLE OBSERVATIONS
	11F	ĸ	4	NO REMARKABLE OBSERVATIONS
	12F	M	2 STOMACH	MILK IN STOMACH
	13F	D	1 STOMACH	MILK IN STOMACH
	14F	ĸ	4 EXTERNAL EXAM	SCAB
				RIGHT SHOULDER
				EXTERNAL FINDING CONFIRMED

SEX CODES: M-Male, F=Female, U=Undetermined

PUP STATUS CODES: D-DIED M-MISSING K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX HH

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP NECROPSY OBSERVATIONS

MALE#	PUP# S	ratus	DAY ORGAN	OBSERVATION
4543	(CONTINUE)))		
	15F	K	4 EXTERNAL EXAM	SCAB
				DORSAL CERVICAL
				EXTERNAL FINDING CONFIRMED
				RED, 0.5 X 0.2 CM
	16F	K	4	NO REMARKABLE OBSERVATIONS
4544	1M	K	4	NO REMARKABLE OBSERVATIONS
	2M	K	4	NO REMARKABLE OBSERVATIONS
	3M	K	4	NO REMARKABLE OBSERVATIONS
	4M	K	4	NO REMARKABLE OBSERVATIONS
	5M	K	4	NO REMARKABLE OBSERVATIONS
	6М	ĸ	4	NO REMARKABLE OBSERVATIONS
	7M	ĸ	4	NO REMARKABLE OBSERVATIONS
	8F	K	4	NO REMARKABLE OBSERVATIONS
	9 F	K	4	NO REMARKABLE OBSERVATIONS
	10F	ĸ	4	NO REMARKABLE OBSERVATIONS
	11F	К	4	NO REMARKABLE OBSERVATIONS
	12F	ĸ	4	NO REMARKABLE OBSERVATIONS
	13F	ĸ	4	NO REMARKABLE OBSERVATIONS
	14F	K	4	NO REMARKABLE OBSERVATIONS
4545	1M	D	0 LUNGS	LUNG FLOATATION TEST - FOUND DEAD
			STOMACH	NO MILK IN STOMACH
	2F	Ş	LUNGS	LUNG FLOATATION TEST - STILLBORN
			STOMACH	NO MILK IN STOMACH
	3M	ĸ	4	NO REMARKABLE OBSERVATIONS
	4M	K	4	NO REMARKABLE OBSERVATIONS
	5M	K	4	NO REMARKABLE OBSERVATIONS
	6M	K	4	NO REMARKABLE OBSERVATIONS
	7M	K	4	NO REMARKABLE OBSERVATIONS
	вм	ĸ	4	NO REMARKABLE OBSERVATIONS
	9M	ĸ	4	NO REMARKABLE OBSERVATIONS
	10F	ĸ	4	NO REMARKABLE OBSERVATIONS

SEX CODES: M-Male, F=Female, U=Undetermined

PUP STATUS CODES: S-STILLBORN D-DIED K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX HH

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP 4	9000 PPM			
FEMALE#	PUP# S	TATUS	DAY ORGAN	OBSERVATION
4545	(CONTINUE)	מ)		
	11F	K	4	NO REMARKABLE OBSERVATIONS
	12F	ĸ	4	NO REMARKABLE OBSERVATIONS
	13F	K	4	NO REMARKABLE OBSERVATIONS
	14F	ĸ	4	NO REMARKABLE OBSERVATIONS
4546	1M	ĸ	4	NO REMARKABLE OBSERVATIONS
	2M	ĸ	4	NO REMARKABLE OBSERVATIONS
	3M	K	4	NO REMARKABLE OBSERVATIONS
	4M	K	4	NO REMARKABLE OBSERVATIONS
	5M	K	4	NO REMARKABLE OBSERVATIONS
	6М	K	4	NO REMARKABLE OBSERVATIONS
	7M	ĸ	4	NO REMARKABLE OBSERVATIONS
	M8	K	4	NO REMARKABLE OBSERVATIONS
	9F	ĸ	4	NO REMARKABLE OBSERVATIONS
	10F	K	4	NO REMARKABLE OBSERVATIONS
	11F	K	4	NO REMARKABLE OBSERVATIONS
	12F	K	4	NO REMARKABLE OBSERVATIONS
	13F	K	4	NO REMARKABLE OBSERVATIONS
	14F	ĸ	4	NO REMARKABLE OBSERVATIONS
4547	1M	K	4	NO REMARKABLE OBSERVATIONS
	2M	K	4	NO REMARKABLE OBSERVATIONS
	3M	K	4	NO REMARKABLE OBSERVATIONS
	4M	K	4	NO REMARKABLE OBSERVATIONS
	5M	ĸ	4	NO REMARKABLE OBSERVATIONS
	6M	K	4	NO REMARKABLE OBSERVATIONS
	7F	K	4	NO REMARKABLE OBSERVATIONS
	8F	K	4	NO REMARKABLE OBSERVATIONS
	9F	K	4	NO REMARKABLE OBSERVATIONS
	10F	K	4	NO REMARKABLE OBSERVATIONS
	11F	K	4	NO REMARKABLE OBSERVATIONS
	12F	K	4	NO REMARKABLE OBSERVATIONS
	13F	K	4	NO REMARKABLE OBSERVATIONS

SEX CODES: M-Male, F=Female, U=Undetermined PUP STATUS CODES: K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX HH

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP NECROPSY OBSERVATIONS

MALE#	PUP# S	CATUS	DAY ORGAN	OBSERVATION
4547	(CONTINUE))		
	14F	K	4	NO REMARKABLE OBSERVATIONS
	15F	ĸ	4	NO REMARKABLE OBSERVATIONS
4548	1F	s	LUNGS	LUNG FLOATATION TEST - STILLBORN
			STOMACH	NO MILK IN STOMACH
	2M	K	4	NO REMARKABLE OBSERVATIONS
	3M	K	4	NO REMARKABLE OBSERVATIONS
	4M	K	4	NO REMARKABLE OBSERVATIONS
	5M	K	4	NO REMARKABLE OBSERVATIONS
	6M	K	4	NO REMARKABLE OBSERVATIONS
	7F	K	4	NO REMARKABLE OBSERVATIONS
	8F	K	4	NO REMARKABLE OBSERVATIONS
	9F	K	4	NO REMARKABLE OBSERVATIONS
	10F	K	4	NO REMARKABLE OBSERVATIONS
	11F	K	4	NO REMARKABLE OBSERVATIONS
	12F	K	4	NO REMARKABLE OBSERVATIONS
	13F	K	4	NO REMARKABLE OBSERVATIONS
	14F	K	4	NO REMARKABLE OBSERVATIONS
	15F	K	4	NO REMARKABLE OBSERVATIONS
	16F	K	4	NO REMARKABLE OBSERVATIONS
4549	1M	K	4	NO REMARKABLE OBSERVATIONS
	2M	K	4	NO REMARKABLE OBSERVATIONS
	3M	K	4	NO REMARKABLE OBSERVATIONS
	4M	K	4	NO REMARKABLE OBSERVATIONS
	5M	K	4	NO REMARKABLE OBSERVATIONS
	6M	K	4	NO REMARKABLE OBSERVATIONS
	7F	K	4	NO REMARKABLE OBSERVATIONS
	8F	K	4	NO REMARKABLE OBSERVATIONS
	9F	K	4	NO REMARKABLE OBSERVATIONS
	10F	K	4	NO REMARKABLE OBSERVATIONS
	11F	ĸ	4	NO REMARKABLE OBSERVATIONS
	12F	K	4	NO REMARKABLE OBSERVATIONS

SEX CODES: M-Male, F=Female, U=Undetermined

PUP STATUS CODES: S-STILLBORN K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX HH

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP 4	9000 PPM			
FEMALE#	PUP# S	TATUS	DAY ORGAN	OBSERVATION
4549	(CONTINUED)			
		ĸ	4	NO REMARKABLE OBSERVATIONS
	14F	K	4	NO REMARKABLE OBSERVATIONS
4550	1M	к	4	NO REMARKABLE OBSERVATIONS
	2M	K	4	NO REMARKABLE OBSERVATIONS
	3M	K	4	NO REMARKABLE OBSERVATIONS
	4M	K	4	NO REMARKABLE OBSERVATIONS
	5M	K	4	NO REMARKABLE OBSERVATIONS
	6M	K	4	NO REMARKABLE OBSERVATIONS
	7M	ĸ	4	NO REMARKABLE OBSERVATIONS
	8M	K	4	NO REMARKABLE OBSERVATIONS
	9M	ĸ	4	NO REMARKABLE OBSERVATIONS
	10F	K	4	NO REMARKABLE OBSERVATIONS
	11F	K	4	NO REMARKABLE OBSERVATIONS
	12F	K	4	NO REMARKABLE OBSERVATIONS
	13F	K	4	NO REMARKABLE OBSERVATIONS
	14F	K	4	NO REMARKABLE OBSERVATIONS
	15F	ĸ	4	NO REMARKABLE OBSERVATIONS
	16F	K	4	NO REMARKABLE OBSERVATIONS
4551	1F	s	LUNGS STOMACH	LUNG FLOATATION TEST - STILLBORN NO MILK IN STOMACH
	2M	K	4	NO REMARKABLE OBSERVATIONS
	3M	к	4	NO REMARKABLE OBSERVATIONS
	4 M	K	4	NO REMARKABLE OBSERVATIONS
	5M	ĸ	4	NO REMARKABLE OBSERVATIONS
	6M	K	4	NO REMARKABLE OBSERVATIONS
	7F	K	4	NO REMARKABLE OBSERVATIONS
	8F	K	4	NO REMARKABLE OBSERVATIONS
	9F	K	4	NO REMARKABLE OBSERVATIONS
	10F	K	4	NO REMARKABLE OBSERVATIONS
	11F	K	4	NO REMARKABLE OBSERVATIONS
	12F	ĸ	4	NO REMARKABLE OBSERVATIONS

SEX CODES: M-Male, F=Female, U=Undetermined

PUP STATUS CODES: S-STILLBORN K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX HH

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP NECROPSY OBSERVATIONS

FEMALE#	PIIP# S	TATUS	DAY ORGAN	OBSERVATION	
				•	
4551	(CONTINUE				
	13F	ĸ	4	NO REMARKABLE OBSERVATIONS	
	14F	ĸ	4	NO REMARKABLE OBSERVATIONS	
	15F	K	4	NO REMARKABLE OBSERVATIONS	
4552	1M	к	4	NO REMARKABLE OBSERVATIONS	
	2M	ĸ	4	NO REMARKABLE OBSERVATIONS	
	3M	ĸ	4	NO REMARKABLE OBSERVATIONS	
	4M	K	4	NO REMARKABLE OBSERVATIONS	
	5M	ĸ	4	NO REMARKABLE OBSERVATIONS	
	6M	K	4	NO REMARKABLE OBSERVATIONS	
	7F	ĸ	4	NO REMARKABLE OBSERVATIONS	
	8F	к	4	NO REMARKABLE OBSERVATIONS	
	9F	ĸ	4	NO REMARKABLE OBSERVATIONS	
	10F	K	4	NO REMARKABLE OBSERVATIONS	
	11F	ĸ	4	NO REMARKABLE OBSERVATIONS	
	12F	ĸ	4	NO REMARKABLE OBSERVATIONS	
	13F	K	4	NO REMARKABLE OBSERVATIONS	
4553	1M	ĸ	4	NO REMARKABLE OBSERVATIONS	
	2M	K	4	NO REMARKABLE OBSERVATIONS	
	3M	K	4	NO REMARKABLE OBSERVATIONS	
	4M	K	4	NO REMARKABLE OBSERVATIONS	
	5M	ĸ	4	NO REMARKABLE OBSERVATIONS	
	6M	ĸ	4	NO REMARKABLE OBSERVATIONS	
	7F	K	4	NO REMARKABLE OBSERVATIONS	
	8F	K	4	NO REMARKABLE OBSERVATIONS	
	9F	ĸ	4	NO REMARKABLE OBSERVATIONS	
	10F	K	4	NO REMARKABLE OBSERVATIONS	
	11F	ĸ	4	NO REMARKABLE OBSERVATIONS	
	12F	ĸ	4	NO REMARKABLE OBSERVATIONS	
	13F	K	4	NO REMARKABLE OBSERVATIONS	
	14F	K	4	NO REMARKABLE OBSERVATIONS	
	15F	ĸ	4	NO REMARKABLE OBSERVATIONS	

SEX CODES: M-Male, F=Female, U=Undetermined PUP STATUS CODES: K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 03-4242S SATELLITE STUDY

APPENDIX HH

BUTANE: COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP 4 9000 PPM PUP# STATUS DAY ORGAN OBSERVATION 4553 (CONTINUED) 16F K 4 NO REMARKABLE OBSERVATIONS SEX CODES: M-Male, F=Female, U=Undetermined

PUP STATUS CODES: K-SCHEDULED SACRIFICE

Inhalation Report	Appendix II

TABLE OF CONTENTS

1.	INTF	RODUCTION	653
2.	MAT	TERIALS AND METHODS	
	2.1.	Husbandry During Exposure Periods	653
	2.2.		
	2.3.	Exposure Concentration Determination	
3.	FIGU	URES	
	1.	Chamber Generation System and Whole-Body Exposure	
		Chamber (Group 1)	658
	2.	Chamber Generation System and Whole-Body Exposure	
		Chamber (Groups 2 – 4)	659
4.	TAB	LES	
	I.	Summary of In-Chamber Observations	660
	II.	Chamber Monitoring Results	663
	III.	Equipment List	
	IV.	Chamber Distribution Records	
	V.	Miran Calibration	677
	VI.	Testing Room and Chambers Environmental Monitoring	680

Inhalation Report	Appendix II

1. INTRODUCTION

This appendix presents the methodology for exposure atmosphere generation monitoring and results.

2. MATERIALS AND METHODS

2.1. HUSBANDRY DURING EXPOSURE PERIODS

2.1.1. HOUSING

Animals were individually housed in a 1000 Liter glass and stainless steel whole-body exposure chamber. The placement of the animals in the whole-body exposure chamber was rotated daily to ensure uniform exposure of the animals. A description of the animal rotation is included in the raw data.

2.1.2. FEED

None was provided during exposure.

2.1.3. WATER

None was provided during exposure.

2.1.4. ENVIRONMENTAL CONDITIONS

Chamber temperature and relative humidity were recorded every half-hour during exposure and maintained, to the maximum extent possible, within the ranges presented below. Excursions outside the specified range did not affect the integrity of the study.

Temperature

Desired: Actual:

20 to 24°C 21 to 25°C

Relative Humidity

Desired:

40 to 60%

Actual:

42 to 65%

	Inhalation Report	Appendix II

2.2. TEST SUBSTANCE ADMINISTRATION AND CHAMBER OPERATIONS

2.2.1. ROUTE OF ADMINISTRATION

Inhalation as a gas, via whole-body exposures

2.2.2. TEST SUBSTANCE ADMINISTRATION

The test substance was administered as a gas in the breathing air of the animals. The test atmosphere was generated by an appropriate procedure determined during the pre-study trials. The trials were performed (at least two 6-hour periods) to evaluate the optimal set of conditions and equipment to generate a stable atmosphere at the target exposure levels and maintain uniform conditions throughout the exposure chambers.

2.2.3. TARGET EXPOSURE LEVELS

Group 1 - 0 ppm

Group 2 - 900 ppm

Group 3 - 3000 ppm

Group 4 - 9000 ppm

2.2.4. DURATION AND FREQUENCY OF ADMINISTRATION

Main Study male rats were exposed once daily, seven days/week for 2 weeks prior to mating initiation. Exposure of Main Study male rats (12/group) continued during the mating and post-mating periods until euthanized for a minimum exposure of 28 days. Main Study female rats (12/group) were exposed once daily, seven days/week for a minimum exposure of 28 days. Satellite female rats (12/group) for the reproduction study were exposed once daily, seven days/week for at least two weeks prior to mating initiation. Satellite female rats continued to be exposed once daily during mating. Once mated, Satellite female rats were exposed once daily during gestation (Days 0-19). One Group 4 female continued for 7 days post-mating until it appeared to be at a presumed Gestation Day 19.

Inhalation Report	Appendix II

2.2.5. CHAMBER OPERATIONS

The whole-body exposure chambers each had a volume of approximately 1000 liters. The chambers were operated at a minimum flow rate of 200 liters per minute. The final airflow was set to provide at least one air change (calculated by dividing the chamber volume by the airflow rate) in 5.0 minutes (12 air changes/hour) and a T_{99} equilibrium time (calculated by multiplying the air change by the exponential factor 4.6) of at most 23 minutes. Initial settings for each group are as follows:

Group	Airflow Rate (Lpm)	Air Change (min)	T _{oq} (min)
1	221	4.5	21
2	201	5.0	24
3	204	4.9	23
4	212	4.7	22

This chamber size and airflow rates were considered adequate to maintain the animal loading factor below 5% and the oxygen level at 19% or higher. At the end of the exposure, all animals remained in chamber for a minimum of 30 minutes. During this time, the chamber was operated at the same flow rate as used during the exposure using clean air only. Recordings of airflow rate and static pressure were made every half-hour during the exposure.

The chamber atmospheres were exhausted through the in-house filtering system, which consisted of a coarse filter, a HEPA filter, and an activated charcoal bed.

See Figures 1 and 2, and Table III (Inhalation Report) for equipment list.

-		
1	Inhalation Report	Appendix II

2.2.6. EXPOSURE PROCEDURE

Group 1

Room air was directed into the inlet of 1000 Liter glass and stainless steel exposure chamber.

Groups 2 - 4

The test substance was delivered from a single cylinder, through a regulator and two backpressure gauges, and branched, via ¼" tubing, to the three exposure chambers. For each chamber, ¼" tubing directed the test substance to a flowmeter, regulated by a metering valve, and into the inlet of a 1000 Liter stainless steel and glass whole-body exposure chamber.

See Figures 1 and 2, and Table III for equipment list.

2.3. EXPOSURE CONCENTRATION DETERMINATION

2.3.1. NOMINAL CONCENTRATION

A nominal exposure concentration (ppm) was calculated by dividing the average test substance flow (ccm) during each exposure by the average chamber airflow (Lpm).

Nominal (ppm) = Test Substance Flow (ccm) x 1000 Chamber Airflow (Lpm)

An overall nominal exposure concentration (ppm) was also calculated (for Groups 2, 3 and 4 combined) by weighing the cylinder before and after each day of exposure and dividing the weight differential (grams) by the total chamber airflow (L).

Nominal (ppm) = $\frac{\Delta Wt (g) \times 10^6 \mu g/g \times 22.4 \mu L/\mu mole \times 295^{\circ} K/273^{\circ} K}{\text{Chamber Airflow (Lpm) x Exposure Duration (min) x 58.12 <math>\mu g/\mu mole}$

See Table III for equipment list.

	•	
	Inhalation Report	Appendix II

2.3.2. CHAMBER SAMPLING

Determination of the exposure levels were made using a MIRAN® Ambient Air analyzer equipped with a strip chart recorder. The test atmosphere was drawn from the normal sampling portal through the MIRAN® and measurements were recorded at least 4 times during each exposure. The exposure levels were determined by comparison of the measured absorbance to a calibrated response curve constructed using the same instrument settings.

See Table III for equipment list.

2.3.3. PARTICLE SIZE DISTRIBUTION

Particle size samples were drawn once during each week of exposure for the chambers and room air using a TSI Aerodynamic Particle Sizer. The samples were drawn for 20 seconds at a rate of 5.0 Lpm. The mass median aerodynamic diameter, geometric standard deviation and total mass concentration were calculated. A computer was used to program the system to the appropriate settings prior to sampling. The particle size distributions were calculated by the computer and printed out.

See Table III for equipment list.

2.3.4. CHAMBER AND EXPOSURE ROOM ENVIRONMENT

Chamber oxygen levels (maintained at least 19%) were measured pretest and at the beginning, middle and end of the study. Air samples were taken in the vapor generation area pretest and at the beginning, middle and end of the study. Light (maintained approximately 30-40 foot-candles at 1.0 meter above the floor) and noise levels (maintained below 85 decibels) in the exposure room were measured pretest and at the beginning, middle and end of the study.

See Table III for equipment list.

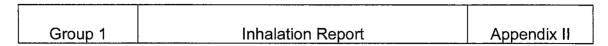
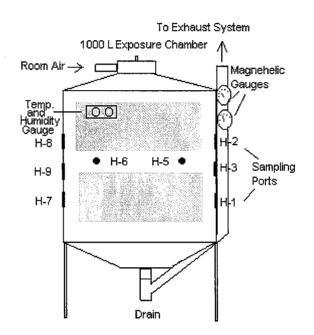



Figure I
Chamber Generation System
and Whole-Body Exposure Chamber

Notes:

- 1. Sampling Ports H-11 (left-bottom), H-12 (left-top), H-13 (right-bottom) and H-14 (right-top) used for pretest distribution sampling, were located on the back wall of the chambers.
- 2. Animals were individually housed on three levels within the exposure chamber.

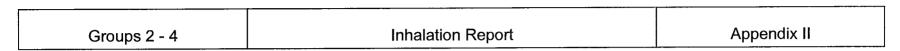
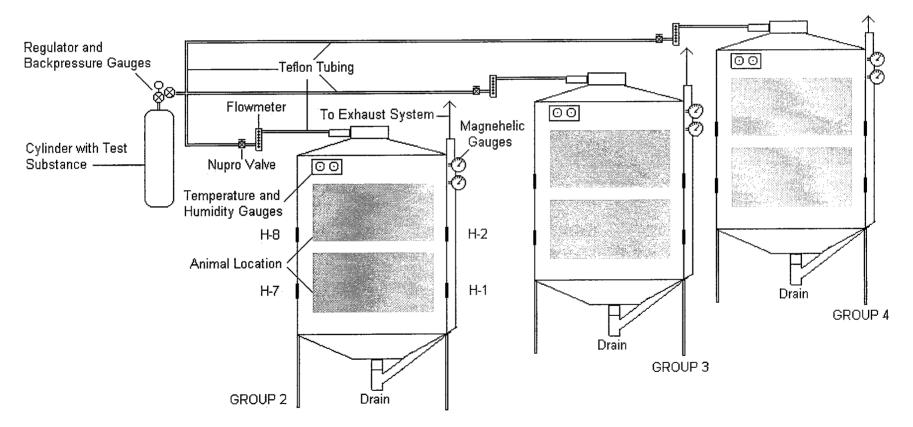



Figure 2
Chamber Generation System
and Whole-Body Exposure Chamber

03-4242

Page 660 Final Report

		Inhalation Report									Appendix II					
			Summ	ary of I	Tab n-Cha	le I mber C)bserva	ations								
Exposure Day	0	1	2	3	4	5	6	7	8	9	10	11	12	13		
Group 1 – 0 ppm																
Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	All	All		
Group 2 – 900 ppm																
Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	All	All		
Group 3 – 3000 ppm																
Within Normal Limits	All	All	All	All	All	All	All	All	All	All	Ali	All	All	All		
Group 4 – 9000 ppm																
Within Normal Limits	All	All	All	All	All	All	All	All	Ali	All	All	All	All	All		

All = 100% of the animals exhibiting a given observation.

Note: In-chamber observations are based on all animals present in the exposure chamber at the time.

				nhalati	on Rep	ort				Appendix II					
		Ç													
Exposure Day	14	15	16	17	Chamb 18	19	20	21	22	23	24	25	26		
Group 1 – 0 ppm															
Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	Ali	All		
Group 2 – 900 ppm															
Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	All		
Group 3 – 3000 ppm															
Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	All		
Group 4 – 9000 ppm															
Within Normal Limits	All	All	Ali	All	All	All	All	All	All	All	All	All	ΑI		

All = 100% of the animals exhibiting a given observation.

Note: In-chamber observations are based on all animals present in the exposure chamber at the time.

Page 662 03-4242 Final Report

		Inhalation Report									Appendix II					
	Table I Summary of In-Chamber Observations															
Exposure Day	27	28	29	30	31	32	33	34	35	36	37	38	39	40		
Group 1 – 0 ppm																
Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All				
Group 2 – 900 ppm																
Within Normal Limits	Ail	All	All	All	All	All	All	All	All	All	All	All	All	All		
Group 3 – 3000 ppm																
Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All					
Group 4 – 9000 ppm																
Within Normal Limits	All	All	All	All	Ali	All	All	All	All	All	All					

All = 100% of the animals exhibiting a given observation.

Note: In-chamber observations are based on all animals present in the exposure chamber at the time.

Huntingdon Life Sciences	03-4242	Page 663 Final Report
	Inhalation Report	Appendix II

Table II Chamber Monitoring Results Preface

Key to Abbreviations

MMAD	=	Mass Median Aerodynamic Diameter
GSD	=	Geometric Standard Deviation
TMC	=	Total Mass Concentration
N (gf)	=	Nominal (by gas flow)
N (wt)	=	Nominal (by weight)

Chamber Monitoring Results
Cumulative Exposure Record
Group 1 - 0 ppm (Air Control)

									Chamber Environment				
									į r	Particle S	ize	Mear	1
Day	Date	Exposure		Ar	nalytical Ch	amber Co	ncentratio	n	De	eterminat	ions	Temperature	Humidity
		Number	Nominal	Mean		Indivi	dual		MMAD	GSD	TMC		
			(ppm)	(ppm)		(ppm)					(mg/m ³)	(°C)	(%)
0	29-Sep-03	1	0	0.00	0.00	0.00	0.00	0.00				25	55
1	30-Sep-03	2	0	0.00	0.00	0.00	0.00	0.00		İ		25	57
2	1-Oct-03	3	0	0.00	0.00	0.00	0.00	0.00	3.195	2.386	2.39E-03	24	56
3	2-Oct-03	4	0	0.00	0.00	0.00	0.00	0.00				25	55
4	3-Oct-03	5	0	0.00	0.00	0.00	0.00	0.00				25	54
5	4-Oct-03	6	0	0.00	0.00	0.00	0.00	0.00				24	56
6	5-Oct-03	7	0	0.00	0.00	0.00	0.00	0.00		İ		24	56
7	6-Oct-03	8	0	0.00	0.00	0.00	0.00	0.00				24	55
8	7-Oct-03	9	0	0.00	0.00	0.00	0.00	0.00				24	59
9	8-Oct-03	10	0	0.00	0.00	0.00	0.00	0.00	1.108	2.273	8.08E-03	24	57
10	9-Oct-03	11	0	0.00	0.00	0.00	0.00	0.00	ŀ			25	58
11	10-Oct-03	12	0	0.00	0.00	0.00	0.00	0.00				24	59
12	11-Oct-03	13	0	0.00	0.00	0.00	0.00	0.00				24	57
13	12-Oct-03	14	0	0.00	0.00	0.00	0.00	0.00				25	47
14	13-Oct-03	15	0	0.00	0.00	0.00	0.00	0.00		i		25	43
15	14-Oct-03	16	0	0.00	0.00	0.00	0.00	0.00				25	50
16	15-Oct-03	17	0	0.00	0.00	0.00	0.00	0.00	3.390	1.930	1.30E-03	25	47
17	16-Oct-03	18	0	0.00	0.00	0.00	0.00	0.00				25	55
18	17-Oct-03	19	0	0.00	0.00	0.00	0.00	0.00				25	59
19	18-Oct-03	20	0	0.00	0.00	0.00	0.00	0.00	1		i .	24	60
20	19-Oct-03	21	0	0.00	0.00	0.00	0.00	0.00				24	58
21	20-Oct-03	22	0	0.00	0.00	0.00	0.00	0.00				24	57
22	21-Oct-03	23	0	0.00	0.00	0.00	0.00	0.00				24	58
23	22-Oct-03	24	0	0.00	0.00	0.00	0.00	0.00	4.260	2.450	2.61E-03	24	57
24	23-Oct-03	25	0	0.00	0.00	0.00	0.00	0.00				24	57
25	24-Oct-03	26	0	0.00	0.00	0.00	0.00	0.00				24	57
26	25-Oct-03	27	0	0.00	0.00	0.00	0.00	0.00		L		25	53

Chamber Monitoring Results Cumulative Exposure Record Group 1 - 0 ppm (Air Control)

												Chamber En	/ironment	
	1								F	Particle Si	ize	Mean		
Day	Date	Exposure		Ar	nalytical Ch	amber Co	ncentratio	n	De	terminati	ions	Temperature	Humidity	
		Number	Nominal	Mean		Indivi	dual		MMAD	GSD	ТМС			
			(ppm)	(ppm)		(ppi	m)		(µm)		(mg/m³)	(°C)	(%)	
27	26-Oct-03	28	0	0.00	0.00	0.00	0.00	0.00				25	58	
28	27-Oct-03	29	0	0.00	0.00	0.00	0.00	0.00				25	58	
29	28-Oct-03	30	0	0.00	0.00	0.00	0.00	0.00				25	57	
30	29-Oct-03	31	0	0.00	0.00	0.00	0.00	0.00	13.27	2.130	5.08E-03	23	58	
31	30-Oct-03	32	0	0.00	0.00	0.00	0.00	0.00				22	58	
32	31-Oct-03	33	0	0.00	0.00	0.00	0.00	0.00				22	58	
33	1-Nov-03	34	0	0.00	0.00	0.00	0.00	0.00				22	57	
34	2-Nov-03	35	0	0.00	0.00	0.00	0.00	0.00				23	57	
35	3-Nov-03	36	0	0.00	0.00	0.00	0.00	0.00				22	59	
36	4-Nov-03	37	0	0.00	0.00	0.00	0.00	0.00				22	58	
37	5-Nov-03	38	0	0.00	0.00	0.00	0.00	0.00	0.7893	1.573	2.23E-03	22	58	
38	6-Nov-03	39	0	0.00	0.00	0.00	0.00	0.00				21	58	
		Mean	0		0.00					2.124	3.62E-03	23.9	56.1	
	S.D. 0 0.00							4.583	0.328	2.52E-03	1.1	3.6		

Chamber Monitoring Results Cumulative Exposure Record Group 2 - 900 ppm

												Chamber En	vironment
									Particle Size			Meai	n
Day	Date	Exposure		Ar	alytical Ch	amber Co	ncentratio	n	De	terminat	ions	Temperature	Humidity
		Number	Nominal	Mean	•	Indivi	dual		MMAD	GSD	TMC		
			(ppm)	(ppm)	(ppm)			(µm)		(mg/m ³)_	(°C)	(%)	
0	29-Sep-03	1	958	969.5	982	993	933	970				24	56
1	30-Sep-03	2	940	943.5	932	924	956	962				24	57
2	1-Oct-03	3	940	940.5	947	953	932	930	4.254	2.202	3.67E-03	24	56
3	2-Oct-03	4	940	931.0	925	939	937	923				24	56
4	3-Oct-03	5	940	931.0	911	933	940	940			i	24	55
5	4-Oct-03	6	940	929.0	896	949	938	933				24	55
6	5-Oct-03	7	940	928.8	909	945	916	945				24	57
7	6-Oct-03	8	940	955.8	954	954	947	968				24	54
8	7-Oct-03	9	940	950.8	962	950	941	950	1			24	59
9	8-Oct-03	10	935	907.8	769	936	970	956	1.073	1.978	6.82E-03	24	57
10	9-Oct-03	11	940	943.0	941	933	956	942				24	60
11	10-Oct-03	12	940	942.8	941	950	948	932	ļ .			24	59
12	11-Oct-03	13	940	917.8	897	916	920	938	,			а	а
13	12-Oct-03	14	940	903.8	886	911	909	909				24	47
14	13-Oct-03	15	940	945.8	950	945	950	938				24	43
15	14-Oct-03	16	940	965.8	948	971	968	976			i	24	50
16	15-Oct-03	17	940	952.8	956	950	947	958	4.569	1.915	1.33E-03	24	45
17	16-Oct-03	18	940	960.8	953	963	965	962				24	57
18	17-Oct-03	19	940	949.3	955	958	940	944				24	57
19	18-Oct-03	20	940	933.0	963	949	925	895				24	61
20	19-Oct-03	21	940	934.8	903	937	954	945				24	57
21	20-Oct-03	22	940	936.8	930	927	940	950				24	56
22	21-Oct-03	23	917	939.3	924	940	945	948				24	59
23	22-Oct-03	24	917	924.5	945	895	923	935	10.50	2.596	4.53E-03	24	56
24	23-Oct-03	25	917	931.5	954	927	922	923				24	57
25	24-Oct-03	26	917	940.3	945	947	962	907				24	58
26	25-Oct-03	27	917	947.5	933	945	949	963				24	53

Chamber Monitoring Results Cumulative Exposure Record Group 2 - 900 ppm **Chamber Environment** Mean Particle Size Temperature Humidity **Analytical Chamber Concentration** Determinations Day Date **Exposure GSD** TMC Individual MMAD Mean Number Nominal (mg/m^3) (°C) (%) (µm) (ppm) (ppm) (ppm) 26-Oct-03 936.0 27-Oct-03 922.0 28-Oct-03 919.0 7.219 2.125 2.02E-03 29-Oct-03 920.5 877.3 30-Oct-03 31-Oct-03 911.3 1-Nov-03 903.8 2-Nov-03 910.0 928.5 3-Nov-03 4-Nov-03 904.0 0.8063 1.786 2.34E-03 5-Nov-03 904.3 910.3 6-Nov-03 7-Nov-03 934.8 8-Nov-03 918.0 56.1 4.737 2.100 3.45E-03 23.4 Mean 930.6 0.285 2.02E-03 3.8 3.702 1.1 S.D. 28.1

^aDue to euipment malfunction, temperature and humidity could not be recorded for 2.5 to 6.0 hours on Day 12 exposure.

Chamber Monitoring Results Cumulative Exposure Record Group 3 - 3000 ppm

	1											Chamber En	vironment
									F	Particle Si	ze	Mea	n
Day	Date	Exposure		Analytical Chamber Concentration			n	D€	terminati	ons	Temperature	Humidity	
_		Number	Nominal	Mean		Indivi	dual		MMAD	GSD	ТМС		
			(ppm)	(ppm)		(ppr	n)		(µm)		(mg/m³)	(°C)	(%)
0	29-Sep-03	1	2950	3058	3030	3120	3090	2990				24	56
1	30-Sep-03	2	2950	3055	3060	3040	3090	3030				25	60
2	1-Oct-03	3	2950	3035	2950	3040	3080	3070	2.864	2.098	2.97E-03	24	57
3	2-Oct-03	4	2950	3043	3060	3000	3050	3060				24	58
4	3-Oct-03	5	2950	3008	3010	3040	3030	2950				24	58
5	4-Oct-03	6	2950	3043	2970	3110	3010	3080				24	58
6	5-Oct-03	7	2950	2995	3000	2970	2960	3050				24	59
7	6-Oct-03	8	2950	3070	3050	3050	3090	3090				24	57
8	7-Oct-03	9	2950	3035	3050	3030	3020	3040				24	62
9	8-Oct-03	10	2950	3000	2990	2950	3030	3030	1.092	2.224	8.12E-03	24	59
10	9-Oct-03	11	2950	3058	3040	3060	3050	3080				24	61
11	10-Oct-03	12	2950	3005	2990	3000	3030	3000				24	60
12	11-Oct-03	13	2950	2960	2940	2940	2960	3000				24	59
13	12-Oct-03	14	2950	2943	3000	2860	2980	2930				24	49
14	13-Oct-03	15	2950	3053	3050	3030	3070	3060				24	44
15	14-Oct-03	16	2950	3008	2950	3020	3060	3000				24	51
16	15-Oct-03	17	2950	2935	3000	2930	2910	2900	5.160	2.075	1.69E-03	24	45
17	16-Oct-03	18	2950	2973	2990	2990	2960	2950				24	59
18	17-Oct-03	19	2950	2955	2940	2950	2970	2960				24	59
19	18-Oct-03	20	2950	2998	3000	3020	2940	3030				24	65
20	19-Oct-03	21	2950	3028	2960	3050	2990	3110				24	60
21	20-Oct-03	22	2950	3098	3090	3110	3090	3100				24	59
22	21-Oct-03	23	2950	2995	3020	2900	3000	3060				24	61
23	22-Oct-03	24	2950	3030	3060	2990	3020	3050	1.733	2.047	1.55E-03	24	61
24	23-Oct-03	25	2950	3118	3200	3060	3090	3120				24	62
25	24-Oct-03	26	2950	3053	3020	3040	3100	3050				24	61
26	25-Oct-03	27	2950	3033	2970	3010	3100	3050				24	56

Chamber Monitoring Results Cumulative Exposure Record Group 3 - 3000 ppm

												Chamber En	vironment
								F	Particle Si	ze	Mea	Mean	
Day	Date	Exposure	'	An	alytical Ch	amber Co	ncentratio	n	D€	eterminati	ons	Temperature	Humidity
·		Number	Nominal	Mean		Indivi	dual		MMAD	GSD	ТМС		
			(ppm)	(ppm)		(ppr	n)		(µm)		(mg/m³)	(°C)	(%)
27	26-Oct-03	28	2950	3030	3020	3030	3040	3030				24	59
28	27-Oct-03	29	2950	3045	3140	3070	2980	2990				24	59
29	28-Oct-03	30	2950	3025	3000	3070	3050	2980				24	59
30	29-Oct-03	31	2950	2928	2930	2890	2930	2960	3.084	1.897	8.38E-04	23	59
31	30-Oct-03	32	2950	3023	3000	3090	2970	3030				22	61
32	31-Oct-03	33	2950	3095	3050	3070	3130	3130				22	60
33	1-Nov-03	34	2950	3003	2980	2970	3020	3040				22	59
34	2-Nov-03	35	2950	3010	3010	3000	2980	3050				22	58
35	3-Nov-03	36	2950	3065	3130	2980	3090	3060				22	60
36	4-Nov-03	37	2950	3038	3050	2980	3070	3050			1	21	59
37	5-Nov-03	38	2950	3000	3030	2910	2980	3080	0.7985	1.595	2.46E-03	21	59
		Mean	2950			3022			2.455	1.989	2.94E-03	23.6	58.1
		S.D.	0			58			1.613	0.220	2.64E-03	0.9	4.2

Chamber Monitoring Results Cumulative Exposure Record Group 4 - 9000 ppm

												Chamber En	vironment
									F	Particle Si	ize	Mea	n
Day	Date	Exposure		Analytical Chamber Concentration			D€	terminat	ons	Temperature	Humidity		
_		Number	Nominal	Mean		Indivi	dual		MMAD	GSD	ТМС		
			(ppm)	(ppm)		(ppr	n)		(µm)		(mg/m³)	(°C)	(%)
0	29-Sep-03	1	9480	8518	8520	8420	8510	8620				24	53
1	30-Sep-03	2	9830	8623	8290	8340	8880	8980				24	54
2	1-Oct-03	3	9510	9048	9130	9070	9070	8920	4.299	2.444	3.80E-03	24	54
3	2-Oct-03	4	10500	9415	9350	9570	9400	9340				24	55
4	3-Oct-03	5	10100	9723	10100	9650	9540	9600				24	54
5	4-Oct-03	6	9860	9198	9430	9060	9140	9160				24	56
6	5-Oct-03	7	9820	9105	9170	9020	9020	9210				24	56
7	6-Oct-03	8	9820	9243	9290	9310	9310	9060				24	55
8	7-Oct-03	9	9820	8880	8800	9000	8740	8980				24	59
9	8-Oct-03	10	9820	9123	8950	9200	9000	9340	1.002	1.790	6.54E-03	24	57
10	9-Oct-03	11	9820	9083	9050	8820	9230	9230			ŀ	24	58
11	10-Oct-03	12	9820	9283	9270	9250	9320	9290				24	57
12	11-Oct-03	13	9820	9103	9170	9070	9000	9170				24	56
13	12-Oct-03	14	9820	8940	8960	8770	9070	8960				24	47
14	13-Oct-03	15	9820	9250	9380	9180	9240	9200				24	42
15	14-Oct-03	16	9820	9210	9290	9140	9200	9210				24	48
16	15-Oct-03	17	9820	8920	9100	8890	8850	8840	4.736	1.876	1.94E-03	24	43
17	16-Oct-03	18	9820	9303	9790	9320	9100	9000			į į	24	56
18	17-Oct-03	19	9820	9148	9320	9160	8980	9130				24	55
19	18-Oct-03	20	9820	9420	9780	9180	9360	9360				24	63
20	19-Oct-03	21	9820	9480	9650	9460	9310	9500				24	57
21	20-Oct-03	22	9820	9430	9430	9310	9490	9490				24	57
22	21-Oct-03	23	9820	9195	9230	9020	9320	9210]	24	58
23	22-Oct-03	24	9820	9158	9310	9050	9180	9090	8.134	2.590	3.48E-03	24	57
24	23-Oct-03	25	9820	9293	9470	9030	9320	9350				24	58
25	24-Oct-03	26	9820	9190	9390	9100	9170	9100				24	56
26	25-Oct-03	27	9820	9055	9100	8990	9100	9030				24	53

Chamber Monitoring Results Cumulative Exposure Record Group 4 - 9000 ppm

							Particle Size		Chamber Environment Mean				
Day	Date	Exposure		Ar	alytical Ch	amber Co	ncentratio	n	D€	terminati	ions	Temperature	Humidity
		Number	Nominal	Mean		Indivi	dual		MMAD	GSD	TMC		
			(ppm)	(ppm)		(ppr	n)		(µm)		(mg/m³)	(°C)	(%)
27	26-Oct-03	28	9820	9085	9320	9000	9070	8950				24	56
28	27-Oct-03	29	9820	9175	9360	8960	9290	9090				24	56
29	28-Oct-03	30	9820	9253	9360	9170	9200	9280				24	55
30	29-Oct-03	31	9820	9345	9390	9470	9280	9240	2.032	1.725	6.22E-04	23	57
31	30-Oct-03	32	9820	8828	8920	8920	8450	9020				22	57
32	31-Oct-03	33	9820	9120	8810	9250	9130	9290				22	56
33	1-Nov-03	34	9820	8930	8930	8840	9020	8930				22	57
34	2-Nov-03	35	9820	9118	9100	8920	9400	9050				22	56
35	3-Nov-03	36	9820	9393	9340	9030	9500	9700				22	58
36	4-Nov-03	37	9820	9095	9380	9000	9050	8950				22	57
37	5-Nov-03	38	9820	9280	9350	9350	9210	9210	0.8159	1.745	2.67E-03	22	58
		Mean	9829			9157			3.503	2.028	3.18E-03	23.6	55.2
		S.D.	142			269			2.801	0.385	2.01E-03	0.8	4.0

		· · · · · · ·	Exposures	Summary		
		Nominal	by gas flow (ppm)		
				Total Nominal by	Total Nominal by	
Date	Group 2	Group 3	Group 4	gas flow (ppm)	weight (ppm)	N(gf):N(wt)
29-Sep-03	958	2950	9480	13388	12400	1.08
30-Sep-03	940	2950	9830	13720	13500	1.02
1-Oct-03	940	2950	9510	13400	12200	1.10
2-Oct-03	940	2950	10500	14390	12600	1.14
3-Oct-03	940	2950	10100	13990	14900	0.94
4-Oct-03	940	2950	9860	13750	13700	1.00
5-Oct-03	940	2950	9820	13710	13700	1.00
6-Oct-03	940	2950	9820	13710	13700	1.00
7-Oct-03	940	2950	9820	13710	14900	0.92
8-Oct-03	935	2950	9820	13705	12600	1.09
9-Oct-03	940	2950	9820	13710	14900	0.92
10-Oct-03	940	2950	9820	13710	13700	1.00
11-Oct-03	940	2950	9820	13710	13700	1.00
12-Oct-03	940	2950	9820	13710	14900	0.92
13-Oct-03	940	2950	9820	13710	14900	0.92
14-Oct-03	940	2950	9820	13710	12600	1.09
15-Oct-03	940	2950	9820	13710	12600	1.09
16-Oct-03	940	2950	9820	13710	12600	1.09
17-Oct-03	940	2950	9820	13710	12600	1.09
18-Oct-03	940	2950	9820	13710	13700	1.00
19-Oct-03	940	2950	9820	13710	13700	1.00
20-Oct-03	940	2950	9820	13710	13700	1.00
21-Oct-03	917	2950	9820	13687	12600	1.09
22-Oct-03	917	2950	9820	13687	13700	1.00
23-Oct-03	917	2950	9820	13687	13700	1.00
24-Oct-03	917	2950	9820	13687	12600	1.09
25-Oct-03	917	2950	9820	13687	12600	1.09
26-Oct-03	917	2950	9820	13687	12600	1.09
27-Oct-03	917	2950	9820	13687	13700	1.00
28-Oct-03	917	2950	9820	13687	14900	0.92

				Summary		
		Nominal	by gas flow (ppm)		
	-			Total Nominal by	Total Nominal by	
Date	Group 2	Group 3	Group 4	gas flow (ppm)	weight (ppm)	N(gf):N(w
29-Oct-03	917	2950	9820	13687	13700	1.00
30-Oct-03	917	2950	9820	13687	13700	1.00
31-Oct-03	917	2950	9820	13687	13700	1.00
1-Nov-03	917	2950	9820	13687	12600	1.09
2-Nov-03	917	2950	9820	13687	12600	1.09
3-Nov-03	917	2950	9820	13687	13700	1.00
4-Nov-03	917	2950	9820	13687	13700	1.00
5-Nov-03	917	2950	9820	13687	13700	1.00
6-Nov-03	917	-	-	917	1150	0.80
7-Nov-03	917	-	-	917	1150	0.80
8-Nov-03	917	-	-	917	1150	0.80
		<u> </u>	l	I	Mean:	1.02

Inhalation Report	Appendix II

Table III Equipment List

Exposure Chamber

1000 Liter glass and stainless steel chamber (Wahmann).

Compound Reservoir

Butane Cylinder (MG Industries).

Flowmeter

Dwyer[®], size 0-20 Lpm (Dwyer[®] Instruments).

Top Trak™ Mass Flow Meter, sizes 0 - 1 and 0 -10 Lpm, Model 821-1 (Sierra Instruments).

Pressure/Vacuum Gauges

Backpressure gauge (MG Industries), P/N 10206 and 10201. GAST® vacuum gauge.

Chamber Air Flow

Dwyer® Magnehelic® gauge (Dwyer® Instruments Inc.), calibrated prestudy with a Side Trak™ III, equipped with a Digital Meter, Model 831-N2 (Sierra Instruments, Inc.).

Chamber Static Pressure

Dwyer[®] Magnehelic[®] gauge (Dwyer® Instruments Inc.), calibrated prestudy with Dwyer[®] Mark II Manometer, Model 25 (Dwyer[®] Instruments, Inc.).

Regulators

MG Industries Series 300

Metering Valve

Metering Valve, Model SS-4L Series (Nupro® Co.).

Vacuum Pumps

Thomas Industries Inc., Model 707CM50. Closed-loop pump.

Inhalation Report	Appendix II

Table III Equipment List

Tubing

Clear plastic, sizes ¼", ½" (Norton, Baxter). Plastic, size 1/8" (Tygon). ½" stainless steel. Teflon®, size ¼ ". Plastic "T".

Air Analyzer

MIRAN® 1A-CVF Ambient Air Analyzer (Wilks) with a Cole Parmer Strip Chart Recorder, Model 201, and a Micronta® LCD Benchtop Digital Multimeter, Model No. 22-195

Gas-tight syringe, size 1500 mL, plastic, Model S-1500 (Hamilton). Balston[®] Microfibre™ Disposable Filter Unit was attached in-line.

Syringe, size 0 - 10 mL, plastic (Precision).

Syringe, size 0 - 100 mL, plastic, No. 1100 (Hamilton).

Particle Sizer

TSI Aerodynamic Particle Sizer, Model 331001, and a DELL computer, Model 486P/25, equipped with an Epson LQ-5707 printer, Model P630B.

Environmental Monitoring

VWR Temperature and Humidity Gauge, tested prestudy with a Big Digit Traceable Hygrometer/Thermometer.

Digital Sound Meter 840029 (SPER Scientific & Quantum Instruments Photo Meter 1).

Balance

Pelouze, No. 4040

Inhalation Report	Appendix II

Table IV
Chamber Distribution Records

Group (target)	Date	Port	IR Conc (ppm)	Ratio to H-1
2 (900 ppm)	23 September 2003	H-1	909	1.00
2 (900 ppm)	25 September 2005	H-2	894	0.98
		H-7	968	1.06
		H-8	976	1.07
		H-1	916	1.00
		H-11	956	1.04
		H-12	962	1.05
		H-13	949	1.04
		H-14	962	1.05
3 (3000 ppm)	22 September 2003	H-1	3090	1.00
		H-2	3080	1.00
		H-7	2800	0.91
		H-1	3040	1.00
		H-8	2750	0.90
		H-11	3020	0.99
		H-1	2920	1.00
		H-12	2960	1.01
		H-13	2930	1.00
		H-14	3040	1.04
4 (9000 ppm)	22 September 2003	H-1	9130	1.00
(•	H-2	7400	0.81
		H-7	9350	1.02
		H-8	8920	0.98
		H-1	9030	1.00
		H-11	9420	1.04
		H-12	9250	1.02
		H-13	8920	0.99
		H-1	9130	1.00
		H-14	7740	0.85
	23 September 2003	H-1	9090	1.00
		H-2	8410	0.93
		H-14	8960	0.99

Inhalation Report	Appendix II

Table V
Miran Calibration

Methodology for Butane

<u>Settings:</u> The instrument settings for the Miran 07 unit are summarized below:

wavelength, microns	10.3
pathlength, dial setting	3.29
slit width, mm	1
range, absorbance	1
response, seconds	40
gain	High
chart speed, cm/min	1
chart volts	1

<u>Calibrations:</u> The Miran® was turned on and allowed to warm up for approximately 10 minutes. The cell was flushed with room air for approximately one minute. The loop was closed, the unit was zeroed and the calibration series was performed as shown below. The resultant data were plotted to obtain a calibration curve. Each observer used a separate syringe for calibration.

Injection	Calculated		Absorbance	
<u>Volume</u>	Concentration ¹	Operator 1	Operator 2	<u>Average</u>
(µL)	(ppm)	(volts)	(volts)	(volts)
4000	709	0.0683	0.0611	0.0647
5000	887	0.0840	0.0777	0.0809
17000	3014	0.2573	0.2622	0.2598
51000	9043	0.711	0.717	0.714
61000	10816	0.830	0.850	0.840

¹Calculated Conc. (ppm) = <u>Injection volume (μL)</u> 5.64 L (Volume of Miran cell)

1	Inhalation Report	Appendix II

Table V
Miran Calibration

<u>Calibration Checks:</u> A three-point calibration check of the Miran® was performed for each exposure prior to sampling the chambers. The parameters are shown below:

Injection	Calculated	Expected Absorbance	Acceptable Absorbance
<u>Volume</u>	<u>Concentration</u>	Reading	<u>Range</u>
(µL)	(ppm)	(volts)	(volts)
5000	887	0.0809	0.0688 - 0.0930
17000	3014	0.2598	0.2208 0.2988
51000	9043	0.714	0.607 - 0.821

The absorbance was recorded after each injection. The absorbance was considered satisfactory if it was within 15% of the original calibration series. If any of the absorbance values fell outside the 15% range, the injection was rechecked as follows. The volume for the value that was out of range was reinjected twice. The closer pair of the three injections were averaged and the results were compared to the original curve. If the average of the pair was within the 15% range, the original was accepted. If the value of the average was outside the 15% range, the Study Director decided if a new graph was to be prepared.

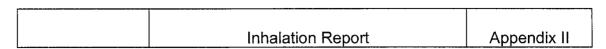
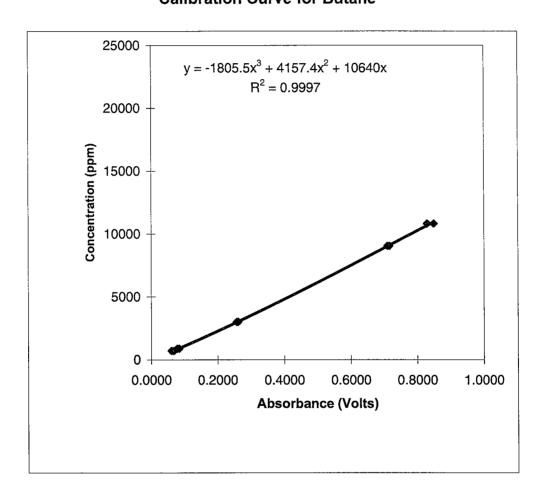



Table V Miran Calibration

Calibration Curve for Butane

_	
	Appendix II

Table VI
Testing Room and Chambers EnviroNMental Monitoring

Interval	Location	Test Substance (ppm)	Light (Ft Candles)	Noise (dB)	Oxygen (%)	Particle Sizing (mg/m³)ª
Pretest	Room 813A	0	35.0	61.5	NM	
	Group 1	0	NM	NM	21	1.77 x 10 ⁻³
	Group 2	0	NM	NM	21	1.91 x 10 ⁻³
	Group 3	0	NM	NM	21	2.19 x 10 ⁻³
	Group 4	0	NM	NM	21	2.54 x 10 ⁻³
Day 1	Room 813A	0	36.0	62.0	NM	
	Group 1	0	NM	NM	21	
	Group 2	944	NM	NM	21]
	Group 3	3055	NM	NM	21	
	Group 4	8623	NM	NM	21	
Day 28	Room 813A	0	33.6	61.8	NM	
,	Group 1	0	NM	NM	21	
	Group 2	922	NM	NM	21	
	Group 3	3045	NM	NM	21	1
	Group 4	9175	NM	NM	21	- -
Day 37	Room 813A	0	36.0	65.7	NM	
	Group 1	0	NM	NM	21]
	Group 2	904	NM	NM	21]
	Group 3	3000	NM	NM	21	_
	Group 4	9280	NM	NM	21	_
						1

NM = Not measured.

^aPretest results presented. For on-test results, see CMR (Table II in Appendix II).

Huntingdon Life Sciences	03-4242	Page 681
		Final Report
	Analytical Report	Appendix JJ

STUDY TITLE

Analytical Report For:

Butane:

Combined Repeated-Exposure Toxicity, Reproduction and Neurotoxicity Screening in Rats via Whole-Body Inhalation Exposures

AUTHOR

Yonggang Wang

REPORT DATE

14 August 2008

STUDY NUMBER

03-4242

Huntingdon Life Sciences	03-4242	Page 682
•		Final Report
	Analytical Report	Appendix JJ

SIGNATURES

Written by:

Yonggang Wang, M.S.

Laboratory Manager

Formulation Chemistry Services

14 Ang 08

Date

Reviewed by:

Kay Saladdin, B.S. **Associate Director**

Formulation Chemistry Services

Approved by:

Barbara A. Litzenberger, B.S. MT (ASCP) Date

Director Analytical Services

Huntingdon Life Sciences	03-4242	Page 683 Final Report
	Analytical Report	Appendix JJ

Table of Contents

. 681 . 682 . 683 . 684 . 684
. 682 . 683 . 684 . 684
. 683 . 684 . 684
. 684 . 684
684
-
. 685
. 685
. 686
. 687

Huntingdon Life Sciences	03-4242	Page 684
-		Final Report_
	Analytical Report	Appendix JJ

1. Summary

The test substance and the analytical standard (Butane) were analyzed ("pre-study" and "post-study") to determine the purity and stability of the test substance by comparison to the analytical standard. The analytical method was validated at Huntingdon Life Sciences (HLS). The analytical method involved gas bag sampling of the test substance and the analytical standard and quantification using Gas Chromatography with Flame Ionization Detection (FID).

2. Experimental Procedures

The analytical method (HLS-012-03) was validated by Formulation Chemistry at HLS. Details of the analytical method and the validation are maintained in this study file.

Gas bag sampling of the test substance and the analytical standard was performed in the Inhalation Department at HLS. The test substance and the analytical standard were analyzed using a Gas Chromatograph equipped with a HP Plot Q (30 m x 0.32 mm, $20 \mu m$) column and Flame Ionization Detector (FID) to determine the purity of Butane test substance. HP 3396A integrator was used for data collection and Excel was used for processing the data.

Date of sample analysis is listed as follows:

Interval	Date Analyzed
"Pre-Study"	30 May 03
Characterization	
"Post-Study"	11 Nov 03
Characterization	

3. Results and Discussion

The test substance and analytical standard (Butane) were analyzed prior to the initiation of the study and after completion of the study to determine the purity and stability of the test substance. The results of the characterization are presented in Tables I and II. A typical chromatogram of Butane standard is presented in Figure I. A typical chromatogram of Butane test substance is presented in Figure II.

Huntingdon Life Sciences	03-4242	Page 685
G		Final Report_
	Analytical Report	Appendix JJ

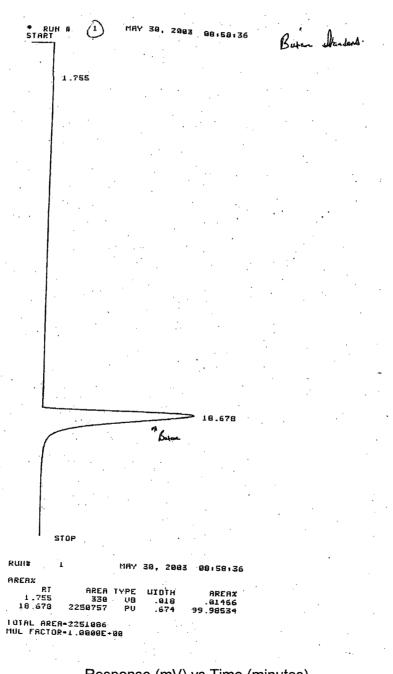
Table I: Characterization ("Pre-Study")

Sample ID	Area % of Ethane	Area % of Propane	Area % of Isobutane	Area % of Other Impurities	Area % of Butane Standard	Mean Area % of Butane Standard
Butane Standard	0.00	0.00	0.00	0.01	99.99	
Butane Standard	0.00	0.00	0.00	0.06	99.94	99.96
Butane Standard	0.00	0.00	0.00	0.05	99.95	

Sample ID	Area % of Ethane	Area % of Propane	Area % of Isobutane	Area % Other Impurities	Area % of Butane Substance	Mean Area % of Butane Test Substance
Butane Test Substance	0.02	0.12	0.69	0.01	99.16	
Butane Test Substance	0.02	0.12	0.54	0.02	99.30	99.23
Butane Test Substance	0.02	0.12	0.60	0.02	99.24	

Table II: Characterization ("Post-Study")

Sample ID	Area % of Ethane	Area % of Propane	Area % of Isobutane	Area % of Other Impurities	Area % of Butane Standard	Mean Area % of Butane Standard
Butane Standard	0.00	0.00	0.00	0.02	99.98	
Butane Standard	0.00	0.00	0.00	0.03	99.97	99.98
Butane Standard	0.00	0.00	0.00	0.02	99.98	

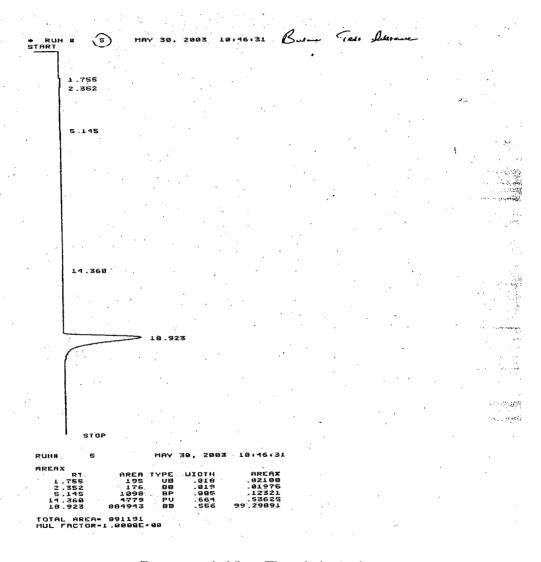

Sample ID	Area % of Ethane	Area % of Propane	Area % of Isobutane	Area % Other Impurities	Area % of Butane Substance	Mean Area % of Butane Test Substance
Butane Test Substance	0.00	0.00	0.00	0.02	99.98	
Butane Test Substance	0.00	0.00	0.00	0.02	99.98	99.98
Butane Test Substance	0.00	0.00	0.00	0.02	99.98	

03-4242	Page 686
	Final Report
alytical Report	Appendix JJ

Figure I. A Typical Gas Chromatogram of Butane Analytical Standard

Analytical Report

Huntingdon Life Sciences



Response (mV) vs Time (minutes)

Pa	ge (687
Final	Re	port

1		
	Analytical Report	Appendix JJ

Figure II. A Typical Gas Chromatogram of Butane Test Substance

Response (mV) vs Time (minutes)

Huntingdon Life S	Sciences	03-4242	Page 688 Final Report
	Neurobel	havioral Positive Control Da	ata Appendix KK
Table of Conten	ts		
		ery Study	

Neurobehavioral Positive Control Data: Functional Observational Battery Preface Appendix KK

This is an abridged version of text and tables from Study No. H-34, 00-14500 as amended on 24 November 2008.

Table of Contents

Introduction	690
Materials and Methods	690
Results and Discussion	712
Conclusion	718
Mean Body Weights, Grip Strength and Landing Foot Splay Values	719
Incidence Summary of Functional Observational Battery Evaluations	730

Neurobehavioral Positive Control Data:	
Functional Observational Battery	Appendix KK

1. INTRODUCTION

This study was designed to train technicians to perform the functional observational battery evaluations for rats and to provide evidence, by use of test materials with known neurological effects, that the observational methods used at Huntingdon Life Sciences, Princeton Research Center, are capable of detecting major neurotoxic endpoints. In addition, these studies were used to demonstrate interobserver reliability for neurobehavioral assessments by evaluating consistency of observations performed by different technicians.

2. MATERIALS AND METHODS

2.1. REGULATORY REFERENCES

2.1.1. TEST GUIDELINES

This study was designed to provide positive control data for neurotoxicity screening studies in accord with the US EPA Health Effects Test Guidelines, OPPTS 870.6200 Neurotoxicity Screening Battery, August 1998.

2.1.2. GOOD LABORATORY PRACTICES

This study was conducted in compliance with Part 160 of 40 CFR (EPA/FIFRA Good Laboratory Practice Standards) with the exception that assays to verify concentration, stability and homogeneity of the test articles in carriers were not performed.

2.1.3. ANIMAL WELFARE ACT COMPLIANCE

This study complied with all appropriate parts of the Animal Welfare Act regulations: 9 CFR Parts 1 and 2 Final Rules, Federal Register, Volume 54, No. 168, August 31, 1989, pp. 36112-36163 effective October 30, 1989 and 9 CFR Part 3 Animal Welfare Standards; Final Rule, Federal Register, Volume 56, No. 32, February 15, 1991, pp. 6426-6505 effective March 18, 1991.

2.1.4. FACILITIES MANAGEMENT/ANIMAL HUSBANDRY

Currently acceptable practices of good animal husbandry were followed e.g., Guide for the Care and Use of Laboratory Animals;

Neurobehavioral Positive Control Data: Functional Observational Battery Appendix KK

National Academy Press, 1996. Huntingdon Life Sciences, East Millstone, New Jersey is fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC).

2.2. STUDY MANAGEMENT

2.2.1. SPONSOR

Huntingdon Life Sciences P.O. Box 2360 Mettlers Road East Millstone, New Jersey 08875-2360

2.2.2. TESTING FACILITY

Huntingdon Life Sciences P.O. Box 2360 Mettlers Road East Millstone, New Jersey 08875-2360

2.2.3. STUDY DIRECTOR

Rosemary C. Mandella, Ph.D., D.A.B.T.

Neurobehavioral Positive Control Data:	
Functional Observational Battery	Appendix KK

2.3. EXPERIMENTAL DESIGN

2.3.1. TRAINING SESSIONS

Training consisted of two parts. In the first part, the technicians were required to view a training video for a functional observational battery (United States Environmental Protection Agency/American Industrial Health Council Training Video and Reference Manual for an FOB, 1996). The second part consisted of observations of animals treated with chemicals known to produce neurological effects as indicated below:

						1	Number o	f Animal	s
								Func	tional
								Observ	rational
				Daily Dose	es ^a	Ini	tial	Bat	tery
	Route of	Test	Dose	Volume	Conc.				
Group	Admin.	Article	(mg/kg)	(mL/kg)	(mg/mL)	M	F	M	F
1 ^b	i.p.	Control	-	5	-	3	-	3	-
2	i.p.	Chlorpromazine	4	5	0.8	3	-	3	-
. 3	i.p.	Amphetamine	2	5	0.4	3	1	3	-
4	i.p.	Amphetamine	8	5	1.6	1	3	-	3
5	i.p.	Physostigmine	1	5	0.2	•	3	-	3
6	Oral	Ethanol	3000	10	300	•	3	_	3

^aRepresent doses of test article as supplied; i.e., no correction for percent active ingredient was made. ^bControl animals received 0.9% saline.

M = Male; F = Female; i.p. = intraperitoneal; Oral, via gastric intubation; mg/kg = milligrams of test article per kilogram of body weight

Neurobehavioral Positive Control Data:	
Functional Observational Battery	Appendix KK

2.3.2. FOB PERFORMANCE EVALUATIONS

After completion of the training session, each technician was required to perform a functional observational battery evaluation in which the technician was blinded as to the treatment group. Each technician evaluated 20 males or 20 females (5 animals/group).

						1	Number o	f Animal	.S
									tional ational
				Daily Dose	es ^a	Ini	tial	Bat	tery
	Route of	Test	Dose	Volume	Conc.				
Group	Admin.	Article	(mg/kg)	(mL/kg)	(mg/mL)	M	F	M	F
1 ^b	i.p.	Control	-	5	-	5	5	5	5
2	i.p.	Chlorpromazine	4	5	0.8	5	5	5	5
3	i.p.	Amphetamine	2	5	0.4	5	5	5	5
4	s.c.°	Physostigmine	1	5	0.2	5	5	5	5

^{*}Represent doses of test article as supplied; i.e., no correction for percent active ingredient was made.

M = Male; F = Female; i.p. = intraperitoneal; s.c. = subcutaneous injection mg/kg = milligrams of test article per kilogram of body weight

2.4. STUDY DATES

2.4.1. STUDY INITIATION

15 February 2000 (Date Study Director signed the Protocol)

2.4.2. DATE OF ANIMAL RECEIPT

3 March 2000

2.4.3. DOSING INITIATION

Training Session: 23 March 2000 (Experimental Start Date)

Performance Evaluations: 26 April 2000

^bControl animals received 0.9% saline.

^cIntraperitoneal injections were administered for the Training Sessions and for the Performance Evaluations conducted by Observer 8; subcutaneous injections were administered for the Performance Evaluations conducted by all other observers.

Neurobehavioral Positive Control Data:	
Functional Observational Battery	Appendix KK

2.4.4. DOSING TERMINATION

6 July 2000

2.4.5. EXPERIMENTAL TERMINATION

1 August 2001

2.4.6. STUDY COMPLETION

1 August 2003 (Date Study Director signed the Final Report)

2.5. TEST ARTICLES

2.5.1. CHLORPROMAZINE

Manufacturer

Sigma Chemical Company St. Louis, Missouri 63178

Lot Number

48H1403

Purity

98%

Description

White/white with a yellow cast powder

Date Received

1 December 1999

Expiration Date

April 2001

Neurobehavioral Positive Control Data:	
Functional Observational Battery	Appendix KK

Storage

Room temperature, protected from light

2.5.2. D-AMPHETAMINE SULFATE

Manufacturer

Sigma Chemical Company St. Louis, Missouri 63178

Lot Number

69H1239

Purity

Assume 100%

Description

Powder

Date Received

7 January 2000

Expiration Date

June 2001

Storage

Room temperature

Neurobehavioral Positive Control Data:	
 Functional Observational Battery	Appendix KK

2.5.3. PHYSOSTIGMINE

Manufacturer

Sigma Chemical Company St. Louis, Missouri 63178

Lot Number

48H1126

Purity

Assume 100%

Description

Powder

Date Received

1 December 1999

Expiration Date

1 December 2004

Storage

Room temperature, protected from light

2.5.4. ETHANOL

Manufacturer

Spectrum Chemical Manufacturing Corporation Gardena, California 90248

Lot Number

MI0504

Neurobehavioral Positive Control Data:		
	Functional Observational Battery	Appendix KK

Purity

100%

Description

Clear liquid

Date Received

16 March 1998

Expiration Date

March 2003

Storage

Room temperature

2.5.5. ANALYSIS

Documentation of the identity, strength, purity, composition and stability; and synthesis, fabrication, and/or derivation of the test articles was the responsibility of the Manufacturers.

2.5.6. ARCHIVAL SAMPLE

Samples from the lots of Chlorpromazine, D-Amphetamine Sulfate, Physostigmine and Ethanol are stored in the Archives of the Testing Facility under conditions specified for test article storage.

Neurobehavioral Positive Control Data:	
Functional Observational Battery	Appendix KK

2.5.7. DISPOSITION

The unused portions of Chlorpromazine, D-Amphetamine Sulfate and Physostigmine were submitted to the Archives of the Testing Facility as archival samples. The remaining portions of Ethanol were retained by the Testing Facility for possible future use.

2.6. CONTROL ARTICLE

0.9% Saline

2.6.1. MANUFACTURER

Baxter Healthcare Corporation Deerfield, Illinois 60015

2.6.2. LOT NUMBER

G949941

2.6.3. **PURITY**

100%

2.6.4. DESCRIPTION

Clear, colorless liquid

2.6.5. DATE RECEIVED

5 November 1999

2.6.6. EXPIRATION DATE

October 2000

2.6.7. STORAGE

Room Temperature

Neurobehavioral Positive Control Data:	
Functional Observational Battery	Appendix KK

2.6.8. ANALYSIS

Documentation of the identity, strength, purity, composition and stability; and synthesis, fabrication, and/or derivation of the control article was the responsibility of the Manufacturer.

2.6.9. ARCHIVAL SAMPLE

A sample from each lot of control article is stored in the Archives of the Testing Facility under conditions specified for control article storage.

2.6.10. DISPOSITION

The unused portion of the control article will be retained for use in future studies. Any empty control article containers will be discarded by the Testing Facility following completion of the study.

2.7. TEST ANIMALS

2.7.1. SPECIES

Albino Rats (Outbred) VAF/Plus[®] CD[®] (Sprague-Dawley derived) [Crl:CD[®] (SD)IGS BR]

2.7.2. SUPPLIER

Charles River Laboratories Kingston, New York 12484

2.7.3. JUSTIFICATION FOR ANIMAL SELECTION

The rat is the animal model recommended by the testing guidelines for use in neurotoxicity screening studies. In addition, a historical database is available for comparative evaluation.

Neurobehavioral Positive Control Data:	
Functional Observational Battery	Appendix KK

2.7.4. NUMBER OF ANIMALS

Transferred from the In-house Colony: 60 total (30 males, 30 females)

Placed on test: 40 total (20 males, 20 females)

Females were nulliparous and non-pregnant.

2.7.5. JUSTIFICATION FOR NUMBER OF ANIMALS

The neurotoxicants used in this study were chosen because they produce transient neurological effects and do not cause permanent damage to the nervous system at the doses used in this study. Therefore, the animals were used more than once during the training program. During the training portion of the study, a total of 18 animals (3 males or 3 females/chemical) were used. This was considered the minimum number necessary to demonstrate the range of effects of the chemical based on individual animal variability. During the performance part of the study, a total of 20 males and 20 females were used (including animals used in the training portion of the study). This allowed each technician undergoing training to perform the FOB evaluation for 20 animals (5 males or 5 females/group) and allowed two separate evaluations per week. Five animals per group were considered the minimum number necessary to produce scientific and statistically valid data.

2.7.6. AGE AT RECEIPT

23 days

2.7.7. AGE AT INITIATION OF TRAINING SESSION

43 days

Neurobehavioral Positive Control Data:	
 Functional Observational Battery	Appendix KK

2.7.8. AGE AT INITIATION OF PERFORMANCE EVALUATIONS

77 days

2.7.9. WEIGHT AT INITIATION OF TRAINING SESSION (GRAMS)

	Mean	Range
Male:	205	178 to 225
Female:	172	161 to 180

2.7.10. WEIGHT AT INITIATION OF PERFORMANCE EVALUATIONS (GRAMS)

	Mean	Range
Male:	440	379 to 498
Female:	270	235 to 339

2.7.11. ACCLIMATION PERIOD

Animals were acclimated for approximately 3 weeks. All animals were examined during the acclimation period to confirm suitability for study.

2.8. SELECTION AND GROUP ASSIGNMENT

More animals than required for the study were transferred from the inhouse colony. Twenty males and twenty females were randomly selected for use on study and randomly assigned to control or treatment groups. Individual weights of animals used on study at initiation of the training session were within $\pm 20\%$ of the mean weight for each sex. Disposition of all animals not utilized in the study is maintained in the study file.

2.9. ANIMAL IDENTIFICATION

Each rat was identified with a metal ear tag bearing its assigned animal number. The assigned animal number plus the study number comprised the unique animal number for each animal. In addition, each cage was provided with a cage card which was color-coded for dose level

Neurobehavioral Positive Control Data:	
Functional Observational Battery	Appendix KK

identification and contained study number and animal number information.

2.10. VETERINARY CARE

Animals were monitored by the technical staff for any conditions requiring possible veterinary care.

2.11. HUSBANDRY

2.11.1. HOUSING

Animals were doubly housed in elevated, stainless steel, wire mesh cages during the first week of the acclimation period and individually housed thereafter.

2.11.2. FEED

Certified Rodent Diet, No. 5002; (Meal) (PMI Nutrition International, St. Louis, Missouri) was available without restriction. Fresh feed was presented weekly.

2.11.3. FEED ANALYSIS

Analysis of each feed lot used during this study was performed by the manufacturer. Results are maintained on file.

2.11.4. WATER

Water was available without restriction via an automated watering system (Elizabethtown Water Company, Westfield, New Jersey).

2.11.5. WATER ANALYSIS

Water analyses are conducted by Elizabethtown Water Company, Westfield, New Jersey (Raritan-East Millstone Plant) to ensure that water meets standards specified under the EPA Federal Safe Drinking Water Act Regulations (40 CFR Part 141). In addition, water samples are collected biannually from representative rooms

Neurobehavioral Positive Control Data:	
Functional Observational Battery	Appendix KK

in the Testing Facility; chemical and microbiological water analyses are conducted on these samples by a subcontract laboratory. Results of all water analyses are maintained on file at the Testing Facility.

2.11.6. CONTAMINANTS

There were no known contaminants in the feed or water which were expected to interfere with the results of this study.

2.11.7. ENVIRONMENTAL CONDITIONS

Light/Dark Cycle

A twelve hour light/dark cycle was provided and controlled via an automatic timer.

Temperature

Temperature was monitored and recorded twice daily and maintained within the specified range to the maximum extent possible. Excursions outside the specified range were not considered to have affected the integrity of the study.

Desired:

18 to 26°C

Actual:

15 to 24°C

Relative Humidity

Relative humidity was monitored and recorded once daily and maintained within the specified range to the maximum extent possible. Excursions outside the specified range were not considered to have affected the integrity of the study.

Desired:

30 to 70%

Actual:

28 to 68%

Neurobehavioral Positive Control Data:	
Functional Observational Battery	Appendix KK

2.12. TEST ARTICLE PREPARATION

Appropriate amounts of the test articles were mixed with 0.9% saline to achieve the desired concentrations. Dosing solutions were prepared either the day prior to or the day of dose administration and were stored refrigerated when not in use.

2.13. ANALYSIS OF DOSE SOLUTIONS

Analysis of the dosing solutions was not performed for this study.

2.14. TEST ARTICLE ADMINISTRATION

2.14.1. ROUTE OF ADMINISTRATION

Chlorpromazine, D-Amphetamine Sulfate and saline were administered by intraperitoneal injection into the abdominal cavity near the inguinal region using a sterile needle and syringe of appropriate size. Doses were calculated using the most recent body weights available. A volume of 5 mL/kg of body weight was administered.

Physostigmine was administered by intraperitoneal injection into the abdominal cavity near the inguinal region or by subcutaneous injection into an area on the back, using a sterile needle and syringe of appropriate size. Intraperitoneal injections were administered for the Training Sessions and for the Performance Evaluations conducted by Observer 8; subcutaneous injections were administered for the Performance Evaluations conducted by all other observers. Doses were calculated using the most recent body weights available. A volume of 5 mL/kg of body weight was administered.

Ethanol was administered by oral intubation using a stainless steel dosing needle and syringe of appropriate size. Doses were calculated using the most recent body weights available. A volume of 10 mL/kg of body weight was administered.

Neurobehavioral Positive Control Data:	
Functional Observational Battery	Appendix KK

2.14.2. ROUTE JUSTIFICATION

The intraperitoneal, subcutaneous and oral routes provide rapid test article absorption and have been used in previous studies with the test articles.

2.14.3. DOSE LEVELS

Training Sessions

- 4 mg Chlorpromazine/kg body weight (males)
- 2 mg D-Amphetamine Sulfate/kg body weight (males)
- 8 mg D-Amphetamine Sulfate/kg body weight (females)
- 1 mg Physostigmine/kg body weight (females)
- 3000 mg Ethanol/kg body weight (females)

Performance Evaluations

- 4 mg Chlorpromazine/kg body weight
- 2 mg D-Amphetamine Sulfate/kg body weight
- 1 mg Physostigmine/kg body weight

2.14.4. DOSE VOLUME

0.9% Saline, Chlorpromazine, D-Amphetamine Sulfate, and Physostigmine were administered at a volume of 5 mL/kg of body weight. Ethanol was administered at a volume of 10 mL/kg of body weight.

2.14.5. FREQUENCY OF DOSING

Each animal was dosed no more than once per week. There was a washout period of approximately one to five weeks between doses.

Neurobehavioral Positive Control Data:	
Functional Observational Battery	Appendix KK

2.15. EXPERIMENTAL EVALUATIONS

2.15.1. VIABILITY CHECKS

Animals were observed in their cages once daily for mortality and signs of severe toxic or pharmacologic effects.

2.15.2. PHYSICAL/NEUROBEHAVIORAL EXAMINATIONS

Animals were removed from their cages and examined once pretest to determine suitability for study. Examinations included observations of general condition, skin and fur, eyes, nose, oral cavity, abdomen and external genitalia, occurrence of secretions and excretions, autonomic activity (e.g., lacrimation, piloerection, pupil size, unusual respiratory pattern), changes in gait or posture, response to handling, presence of clonic or tonic movements, stereotypy (e.g., excessive grooming, repetitive circling) and bizarre behavior (e.g., self-mutilation, walking backward).

2.15.3. BODY WEIGHT

Animals were removed from their cages and weighed once pretest and once prior to each dose to determine dose volumes. Body weights were also recorded during the study as part of the functional observational battery.

2.15.4. FUNCTIONAL OBSERVATIONAL BATTERY EVALUATIONS

Training Session

Training consisted of two parts. In the first part, all technicians were required to view a training video for a functional observational battery (United States Environmental Protection Agency/American Industrial Health Council Training Video and Reference Manual for an FOB, 1996). The second part consisted of observations of animals treated with chemicals known to produce neurological effects. Two experienced technicians performed the FOB evaluations and instructed the novice

Neurobehavioral Positive Control Data:	
Functional Observational Battery	Appendix KK

technicians, under the direction of the Study Director or other senior staff member. These evaluations were not performed "blind".

FOB Performance Evaluation

After training, the experienced and novice technicians were each required to evaluate 20 animals (5 males or females/group) using the Functional Observational Battery. Observations by each technician were performed blind, i.e., the observer was unaware of the treatment of each animal. Animals were randomized and blinded according to the standard operating procedures of the Testing Facility.

The results of each FOB evaluation were tabulated and the Study Director determined whether the observations performed by each technician comprised a treatment profile consistent with known neurological effects of each test article. Interobserver reliability was considered established for technicians that accurately identified the treatment profile for each test article. The expected neurological effects were based on published reports in the literature, a previous validation study conducted at the Testing Facility (Study No. 96-4516), and observations by the experienced technicians.

Technicians not accurately identifying the treatment profile for each test article were given additional training and/or conducted additional performance evaluations before being allowed to conduct FOB evaluations on a study.

In addition to being able to identify the treatment profile for each test article, each technician was required to demonstrate consistency in performing the quantitative measures of hindlimb and forelimb grip strength and landing foot splay. This was done by determining the mean and standard deviation for the control animals during the performance evaluation for each technician and calculating the coefficient of variance [(standard deviation/mean) x 100%]. The coefficient of variance was required to be

Neurobehavioral Positive Control Data:	
Functional Observational Battery	Appendix KK

approximately 25% or lower to be considered consistent. If a technician did not achieve this level of consistency, further training and evaluations were performed.

Parameters Evaluated

Temperature, humidity, noise level and illumination were measured and recorded to ensure that variations in environmental conditions were minimal during all evaluations.

Evaluations were performed according to the Testing Facility's standard operating procedures that include defined scales for each function listed below:

- Assessment of signs of autonomic function:
 Ranking of the degree of lacrimation and salivation
 Presence or absence of piloerection and exophthalmus
 Count of urination and defecation
 Pupillary function (constriction of pupil in response to light)
 Degree of palpebral closure
- 2. Description, incidence, and severity of any convulsions, tremors, or abnormal motor movements
- 3. Ranking of general level of activity in the open field
- 4. Description and incidence of posture and gait abnormalities and ranking of gait abnormalities
- 5. Quantitative measures of forelimb and hindlimb grip strength
- 6. Quantitative measure of landing foot splay
- 7. Ranking of reactivity to general stimuli; sensorimotor responses to visual and auditory stimuli; and the response to a tail pinch.

Neurobehavioral Positive Control Data:	
Functional Observational Battery	Appendix KK

2.16. POSTMORTEM

At the conclusion of all evaluations, all animals were sacrificed and discarded. No necropsy was performed and no tissues were collected. Animals were euthanized by carbon dioxide inhalation.

2.17. STATISTICAL ANALYSIS

The following parameters were analyzed statistically:

body weight (from the functional observational battery) forelimb and hindlimb grip strength measurements landing foot splay measurements

2.17.1. METHOD OF ANALYSIS

Mean values of all dose groups were compared to the mean value for the control group at each time interval.

Evaluation of equality of group means was made by the appropriate statistical method, followed by a multiple comparison test if needed. Bartlett's test (Bartlett, 1937) was performed to determine if groups had equal variances. If the variances were equal, parametric procedures were used; if not, nonparametric procedures were used. The parametric method was the standard one-way analysis of variance (ANOVA) using the F ratio to assess significance (Armitage, 1971). If significant differences among the means were indicated, Dunnett's test (Dunnett, 1955, 1964) or Williams test (Williams, 1971, 1972) were used to determine which means were significantly different from the control. The nonparametric method was the Kruskal-Wallis test (Kruskal and Wallis, 1952, 1953) and if differences were indicated, Shirley's test (Shirley, 1977) or Dunn's test (Dunn, 1964) were used to determine which means differed from control. Bartlett's test for equality of variance was conducted at the 1% significance level; all other statistical tests were conducted at the 5% and 1% significance levels.

Neurobehavioral Positive Control Data:	
Functional Observational Battery	Appendix KK

2.18. DATA STORAGE

All raw data and retained samples, as well as the original study protocol and the original final report will be maintained in the Archives of the Testing Facility upon completion of the study.

2.19. PROTOCOL DEVIATIONS

The following protocol deviations occurred during the study but were not considered to have compromised the validity or integrity of the study.

- 1. Viability checks were performed once per day instead of twice per day as specified in the Protocol.
- 2. Animals were approximately 3 weeks old at receipt instead of approximately 4 weeks old as specified in the protocol. In addition, the animals were approximately 11 weeks old at initiation of performance evaluations rather than 8 weeks or less as specified by the protocol.
- 3. Animals were not randomly assigned to study groups to try to equalize mean body weights as specified in the Protocol. Animals were arbitrarily assigned animal numbers and placed into groups by animal number (i.e. Nos. 5001 to 5005 were assigned to Group 1; Nos. 5006 to 5010 were assigned to Group 2; etc.).
- 4. Body weights of some animals exceeded the Protocol specified range of 150 to 250 grams at first dose.
- 5. Initial FOB performance evaluations by Observers 1 and 6 conducted on 26 April 2000 were performed on 10 animals/sex/observer instead of 20 males or 20 females/observer as specified in the Protocol. Evaluations were re-conducted by these observers using the correct number of animals. The initial evaluations are not presented in this report, but are maintained with the study data.
- 6. The washout period between doses was approximately one to five weeks instead of approximately one week as specified in the Protocol.

Neurobehavioral Positive Control Data:	
Functional Observational Battery	Appendix KK

- 7. Body weights for the calculation of dose volumes were not recorded weekly as specified in the Protocol, but were recorded prior to each dose.
- 8. Fresh dosing solutions were prepared on the day prior to or on day of dose rather than once weekly as required by protocol.
- 9. The acceptable variability established in the report of 25-30% differed from the range specified in the protocol of 25% or less.

Neurobehavioral Positive Control Data:	
Functional Observational Battery	Appendix KK

3. RESULTS AND DISCUSSION

3.1. FUNCTIONAL OBSERVATIONAL BATTERY (FOB) EVALUATIONS

Nine technicians were trained or retrained in the performance of the FOB evaluations and subsequently tested for their ability to identify the behavioral pattern produced by three test articles that are known to produce neurological effects. Three of the technicians (Observers 1, 5, and 6) had been previously trained and helped to set the standard for the expected pattern of observations for each compound. Results of a previous training study conducted at the Testing Facility (Study No. 96-4516), as well as published data, were also used to set the performance standards. Results of the FOB evaluations for each test article are presented in Table 2 for all nine observers. The standard pattern of effects for each of the test articles and the comparative evaluations for each observer are presented in the following sections for all observers, with the exception of Observer 3 who is no longer employed at the Testing Facility.

3.2. FOB EVALUATIONS FOR RATS TREATED WITH CHLORPROMAZINE

The pattern of effects observed after administration of chlorpromazine (Text Table 1) are consistent with the actions of the drug which is a central nervous system depressant. The pattern of effects is also similar to that observed in previous training studies. All observers noted postural effects in the home cage, with the animal lying on its side or flattened; effects on gait and posture in the open field, mainly body drags or limbs splayed or dragging; decreased or no locomotion; low or very low arousal level; and no response to the approach of a blunt object. Seven of the eight observers that were compared also noted effects on palpebral closure in the home cage, with eyelids slightly drooping or half-closed and moderate or extreme lacrimation. Six of the eight observers also noted no response to an auditory stimulus and some in coordination in the air righting reflex. In the functional evaluations, there was an increase in landing foot splay of

Neurobehavioral Positive Control Data:	
Functional Observational Battery	Appendix KK

17% to 46% for the Chlorpromazine-treated animals, as compared to the saline controls, for 7/7 observers.

Text Table 1 - FOB Evaluations for Rats Treated with Chlorpromazine

		No. of Observations							
			Males	(n=5))				s (n = 5)	
Ev	aluations	Obs. 1	Obs. 2	Obs. 4	Obs. 5	Obs. 6	Obs. 7	Obs. 8	Obs. 9
Ho	me Cage								
•	Posture								
	lying on Side	2	0	2	0	1	0	0	0
	flattened	1	1	0	1	2	2	1	4
•	Palpebral Closure								
	sl. drooping	4	1	0	1	1	2	4	4
	half-closed	1	0	0	1	0	0	0	0
Ha	ndling								
•	Lacrimation								
	moderate	4	1	2	0	1	1	2	2
	extreme	0	0	0	0	3	2	1	2
Or	en Field								
•	Gait and Posture								
	body drags	1	0	2	2	1	2	3	2
	limbs splayed	5	5	1	1	3	2	2	3
•	Locomotion								
	decreased	0	0	0	1	0	1	4	1
	none	5	5	3	4	4	4	1	4
•	Arousal								
	low	0	0	0	0	0	2	1	1
	very low	5	5	3	5	4	3	4	4
Re	flex								
•	Approach								
	no response	3	3	2	4	3	5	2	5
•	Audition								
	no response	0	2	2	0	2	2	2	4
•	Air Righting								
	sl. uncoordinated	3	2	0	3	2	0	0	1
	lands on side	1	0	1	0	0	0	0	1
La	nding Foot Splay								
•	% increase	35%	34%	17%	21%	46%	17%	a	25%

^aSome measurements were performed incorrectly and not considered valid. The number of valid measurements was considered to be too small to provide a valid comparison.

 Neurobehavioral Positive Control Data:	
Functional Observational Battery	Appendix KK

3.3. FOB EVALUATIONS FOR RATS TREATED WITH AMPHETAMINE

D-amphetamine, a catecholamine analog, is a central nervous system stimulant that induces increased locomotor activity, mainly through noradrenergic receptors, and/or produces stereotypic behavior via dopaminergic mechanisms. The predominant effects that are produced are dependent on both the dose of amphetamine and individual variability. The effects observed in the FOB after administration of D-amphetamine to rats are consistent with both actions of the drug. Stereotypic behavior, consisting of excessive repetitive actions such as sniffing, was noted by all eight observers and was seen in most of the animals. Increased locomotor activity and high or very high arousal state was noted by seven of eight observers, although the incidence was lower than that for stereotypic behavior. Decreased locomotor activity and low or very low arousal was also noted by some observers. This paradoxical effect was attributed to the predominance of the stereotypic effects compared to the stimulation of motor activity, which resulted in less movement and arousal in the animals.

Text Table 2 – FOB Evaluations for Rats Treated with Amphetamine

	Males (n = 5))				Females $(n = 5)$			
Evaluations	Obs. 1	Obs. 2	Obs. 4	Obs. 5	Obs. 6	Obs. 7	Obs. 8	Obs. 9
Open Field								
 Locomotion 								
increased	1	2	2	0	3	5	4	4
decreased	3	1	0	0	2	0	0	0
 Arousal 								
high, sl.								
excitement	1	0	2	4	4	5	4	5
very high,								
hyperalert	1	1	0	0	0	0	0	0
low	1	1	0	1	1	0	0	0
very low	1	1	0	0	0	0	0	0
Stereotypic Behavior								
present	4	5	2	4	5	5	4	5
Reflex								
 Approach 								
no response	1	0	3	1	4	1	0	0

Neurobehavioral Positive Control Data:
Functional Observational Battery Appendix KK

3.4. FOB EVALUATIONS FOR RATS TREATED WITH PHYSOSTIGMINE

Physostigmine is a cholinesterase inhibitor whose administration results in an excess of the neurotransmitter acetylcholine at cholinergic nerve This results in stimulation of cholinergic nerves in both the peripheral and central nervous system. The effects observed in the FOB are consistent with the wide range of effects produced by cholinergic stimulation (Text Table 3). Findings associated with stimulation of the parasympathetic nervous system, including increased salivation and miosis, were noted by all observers in most of the animals. Effects on muscles, as indicated by abnormal posture in the home cage, abnormal posture and gait in the open field, decreased or absent locomotion, muscle fasciculations, and incoordination in the air righting reflex, were also noted by all observers in most animals. In addition, 5/7 observers noted increases of 19% to 30% in mean landing foot splay measurements. Findings indicative of depression of the central nervous system included a low or very low arousal state, as noted by all observers, and no reaction to the approach of a blunt object (6/8 observers) and no reaction to a pain stimulus (7/8 observers). The incidence scores for Observer No. 8 were lower than those recorded by the other observers. Since the scores were low for all measures of cholinergic activity, this suggests that the animals were not evaluated at the time of peak effect or that the animals did not receive a full dose of physostigmine and this was not considered an indication of inability to recognize these effects.

Neurobehavioral Positive Control Data:	
Functional Observational Battery	Appendix KK

Text Table 3 – FOB Evaluations for Rats Treated with Physostigmine

		No. of Observations							
			Males	(n=5))			Female	s (n = 5)	······
Ev	aluations	Obs. 1	Obs. 2	Obs. 4	Obs. 5	Obs. 6	Obs. 7	Obs. 8	Obs. 9
Ho	me Cage				-				
•	Posture								
	lying on side	0	3	0	0	0	0	0	0
	flattened	5	2	4	5	5	1	1	5
Ha	ndling								
•	Salivation								
	slight	3	2	2	2	2	3	1	2
	moderate	2	1	3	3	1	1	0	0
	extreme	0	2	0	0	0	0	0	0
Or	en Field								
•	Gait and Posture							,	
	ataxia	0	0	0	0	0	2	0	2
	body drags	3	5	5	5	3	1	1	3
	limbs splayed	5	3	0	3	3	1	0	1
	hunched posture	0	0	0	0	0 -	1	0	0
•	Locomotion								-
	decreased	0	0	3	0	2	5	1	3
	none	5	5	2	5	3	0	0	2
•	Arousal			_		_	-		_
	low	2	0	1	0	1	3	1	0
	very low	3	5	4	5	4	2	0	5
M	otor Movements	<u> </u>		·					
•	Fasciculations								
	slight	4	4	5	4	1	5	1	. 3
	severe	i	1	0	1	4	0	Ô	2
Re	flex		-		-	· · · · · · · · · · · · · · · · · · ·		<u>-</u>	2
•	Approach								
•	no response	2	0	3	4	2	2	0	2
•	Pain Pain	~			-	-	_		
•	no reaction	4	4	5	5	1	1	0	4
•	Pupil Response				,	1	1		-
-	miosis	5	5	5 .	5	5	5	2	5
•	Air Righting			, ,	,			~	
•	sl. uncoordinated	3	5	1	2	2	2	0	2
	lands on side	2	0	3	0	3	2	1	1
	lands on back	0	0	1	1	0	0	0	0
T 6	nding Foot Splay	"	U	1	1	 	0	1	0
	% increase	29%	22%	a	23%	30%	a	ь	19%
•	70 IIICIEASE	2970	2270		2570	3070	1		1970

^aNo change in landing foot splay, as compared to saline-treated animals.

Some measurements were performed incorrectly and not considered valid. The number of valid measurements was considered to be too small to provide a valid comparison.

Neurobehavioral Positive Control Data:	
Functional Observational Battery	Appendix KK

3.5. CONSISTENCY OF GRIP STRENGTH AND LANDING FOOT SPLAY MEASUREMENTS

Acceptable variability (25-30%) in the measurement of forelimb and hindlimb grip strength and landing foot splay was achieved by all observers.

Text Table 4 - Consistency of Grip Strength and Landing Foot Splay Measurements

	Coefficient of Variability (%)							
Evaluations	Obs. 1	Obs. 2	Obs. 4	Obs. 5	Obs. 6	Obs. 7	Obs. 8	Obs. 9
Forelimb grip strength	11.1	21.1	21.3	22.0	16.0 ^b	8.7	8.8	21.1 ^b
Hindlimb grip strength	15.3	25.3	32.8ª	13.6	18.4	20.5	16.0	20.6
			27.2ª					
Landing foot splay	23.5	19.1	25.4	22.4	15.4	23.4	9.8°	29.1

^aOriginal value was unacceptable. Evaluations were repeated using untreated animals (5 males and 5 females).

^bOriginal value was unacceptable. Evaluations were repeated using untreated animals (10 females).

^cMeasurements of landing foot splay were performed incorrectly and were repeated with ten untreated animals.

03-4242

Page 718 Final Report

Neurobehavioral Positive Control Data:	
Functional Observational Battery	Appendix KK

4. CONCLUSION

Treatment of Sprague-Dawley rats with Chlorpromazine, D-Amphetamine Sulfate, or Physostigmine produced patterns of behavior consistent with their expected neurological effects. These data provide evidence that the procedures used for the Functional Observational Battery evaluations in the Testing Facility are capable of detecting major neurotoxic endpoints. In addition, the neurobehavioral profiles for each compound were correctly identified by Observers 1-2 and 4-9, who were blinded with respect to treatment. This demonstrates that there is interobserver reliability among the trained technicians at the Testing Facility in the conduct of the Functional Observational Battery evaluations. Acceptable variability in the performance of forelimb and hindlimb grip strength measurements and landing foot splay measurements were achieved by all observers. In conclusion, Observers 1, 2, 4, 5, 6, 7, 8, and 9 were considered to be fully qualified to perform Functional Observational Battery evaluations.

	Neurobehavioral Positive Control Data:	
	Functional Observational Battery	
	Mean Body Weights, Grip Strength	
Males	and Landing Foot Splay Values	Appendix KK

Observer 1 Test Article:	·	Group 1 Saline	Group 2 Chlorpromazine	Group 3 D-Amphetamine Sulfate	Group 4 Physostigmine
Body Weight	Mean S.D. N	567.0 27.9 5	569.7 25.0 5	604.1 39.8 5	544.0 45.7 5
Forelimb Grip Strength	Mean S.D. N %CV	926.0 102.5 5 11.1	* 680.5 142.5 5	1070.0 137.5 5	851.5 167.6 5
Hindlimb Grip Strength	Mean S.D. N %CV	781.5 119.8 5 15.3	635.5 85.6 5	831.0 69.9 5	* 622.5 80.4 5
Landing Foot Splay	Mean S.D. N %CV	4.8 1.1 5 23.5	6.5 1.6 5	5.4 1.7 5	6.2 1.6 5

^{*}Significantly different from control mean; p≤0.05.

^{**}Significantly different from control mean; p≤0.01.

If no asterisks, no statistically significant differences from control mean.

	Neurobehavioral Positive Control Data:	
	Functional Observational Battery	
	Mean Body Weights, Grip Strength	
Males	and Landing Foot Splay Values	Appendix KK

Observer 2 Test Article:		Group 1 Saline	Group 2 Chlorpromazine	Group 3 D-Amphetamine Sulfate	Group 4 Physostigmine
Body Weight	Mean S.D. N	572.4 20.9 5	572.0 26.6 5	608.2 36.4 5	547.6 45.9 5
Forelimb Grip Strength	Mean S.D. N %CV	858.0 181.2 5 21.1	1210.0 369.8 5	797.0 266.0 5	941.5 244.6 5
Hindlimb Grip Strength	Mean S.D. N %CV	908.5 230.1 5 25.3	876.5 216.4 5	773.0 103.4 5	807.5 127.5 5
Landing Foot Splay	Mean S.D. N %CV	6.7 1.3 5 19.1	* 9.0 1.8 5	5.7 0.9 5	8.2 1.0 5

^{*}Significantly different from control mean; p≤0.05.

^{**}Significantly different from control mean; p≤0.01.

If no asterisks, no statistically significant differences from control mean.

	Neurobehavioral Positive Control Data:	
	Functional Observational Battery	
	Mean Body Weights, Grip Strength	
Males	and Landing Foot Splay Values	Appendix KK

Observer 3 Test Article:		Group 1 Saline	Group 2 Chlorpromazine	Group 3 D-Amphetamine Sulfate	Group 4 Physostigmine
Body Weight	Mean S.D. N	475.4 24.2 5	490.0 30.2 5	506.3 28.9 5	462.3 37.5 5
Forelimb Grip Strength	Mean S.D. N %CV	1499.5 470.4 5 31.4	1323.5 715.3 5	1909.0 344.9 5	1278.0 351.5 5
Hindlimb Grip Strength	Mean S.D. N %CV	955.5 270.5 5 28.3	837.5 255.7 5	1102.0 230.2 5	906.5 251.5 5
Landing Foot Splay	Mean S.D. N %CV	6.8 0.9 5 13.4	8.3 2.5 5	6.1 0.8 5	6.3 1.4 5

^{*}Significantly different from control mean; p≤0.05.

^{**}Significantly different from control mean; p≤0.01.

If no asterisks, no statistically significant differences from control mean.

	Neurobehavioral Positive Control Data:	
	Functional Observational Battery	
	Mean Body Weights, Grip Strength	
Males	and Landing Foot Splay Values	Appendix KK

Observer 4 Test Article:		Group 1 Saline	Group 2 Chlorpromazine	Group 3 D-Amphetamine Sulfate	Group 4 Physostigmine
Body Weight	Mean S.D. N	456.9 21.3 5	468.7 30.1 5	494.6 26.5 5	448.3 37.0 5
Forelimb Grip Strength	Mean S.D. N %CV	1224.0 261.3 5 21.3	1161.0 149.0 5	1311.0 179.6 5	901.5 276.0 5
Hindlimb Grip Strength	Mean S.D. N %CV	622.5 238.7 5 38.3	577.5 202.9 5	601.0 122.3 5	572.0 206.0 5
Landing Foot Splay	Mean S.D. N %CV	7.2 1.8 5 25.4	8.4 1.8 5	7.1 1.1 5	6.9 1.5 5

^{*}Significantly different from control mean; p≤0.05.

^{**}Significantly different from control mean; p≤0.01.

If no asterisks, no statistically significant differences from control mean.

[%]CV = (Control Group S.D./Control Group Mean) x 100.

	Neurobehavioral Positive Control Data:	
	Functional Observational Battery	
	Mean Body Weights, Grip Strength	
Males	and Landing Foot Splay Values	Appendix KK

Observer 5 Test Article:		Group 1 Saline	Group 2 Chlorpromazine	Group 3 D-Amphetamine Sulfate	Group 4 Physostigmine
Body Weight	Mean S.D. N	558.9 27.4 5	564.5 30.3 5	591.7 37.8 5	530.9 41.4 5
Forelimb Grip Strength	Mean S.D. N %CV	1352.5 296.9 5 22.0	1179.0 327.7 5	1458.5 170.8 5	* 980.5 186.7 5
Hindlimb Grip Strength	Mean S.D. N %CV	1428.0 193.8 5 13.6	1105.0 312.4 5	1266.0 162.7 5	** 941.0 300.3 5
Landing Foot Splay	Mean S.D. N %CV	8.7 1.9 5 22.4	10.5 1.7 5	8.9 1.3 5	10.7 1.5 5

^{*}Significantly different from control mean; p \leq 0.05.

^{**}Significantly different from control mean; p≤0.01.

If no asterisks, no statistically significant differences from control mean.

[%]CV = (Control Group S.D./Control Group Mean) x 100.

	Neurobehavioral Positive Control Data:	
	Functional Observational Battery	
	Mean Body Weights, Grip Strength	
Females	and Landing Foot Splay Values	Appendix KK

Observer 6 Test Article:		Group 1 Saline	Group 2 Chlorpromazine	Group 3 D-Amphetamine Sulfate	Group 4 Physostigmine
Body Weight	Mean S.D. N	313.0 18.4 5	314.5 26.3 5	311.5 46.9 5	311.0 10.5 5
Forelimb Grip Strength	Mean S.D. N %CV	667.0 294.4 5 44.1	847.5 143.6 5	1005.5 159.5 5	708.0 203.3 5
Hindlimb Grip Strength	Mean S.D. N %CV	827.5 152.2 5 18.4	835.5 161.6 5	947.0 50.1 5	820.0 136.6 5
Landing Foot Splay	Mean S.D. N %CV	5.0 0.8 5 15.4	* 7.3 0.6 5	4.0 0.8 5	6.5 1.8 5

^{*}Significantly different from control mean; p≤0.05.

^{**}Significantly different from control mean; p≤0.01.

If no asterisks, no statistically significant differences from control mean.

[%]CV = (Control Group S.D./Control Group Mean) x 100.

	Neurobehavioral Positive Control Data:	
	Functional Observational Battery	
	Mean Body Weights, Grip Strength	
Females	and Landing Foot Splay Values	Appendix KK

Observer 7 Test Article:		Group 1 Saline	Group 2 Chlorpromazine	Group 3 D-Amphetamine Sulfate	Group 4 Physostigmine
Body Weight	Mean S.D. N	313.0 17.5 5	312.3 26.1 5	305.5 33.0 5	310.1 13.2 5
Forelimb Grip Strength	Mean S.D. N %CV	815.0 71.2 5 8.7	869.5 124.3 5	975.5 147.4 5	766.5 161.4 5
Hindlimb Grip Strength	Mean S.D. N %CV	620.0 127.2 5 20.5	560.5 116.7 5	673.0 105.2 5	642.5 174.5 5
Landing Foot Splay	Mean S.D. N %CV	6.6 1.5 5 23.4	7.7 0.8 5	5.7 0.8 5	6.4 1.8 5

^{*}Significantly different from control mean; p≤0.05.

^{**}Significantly different from control mean; p≤0.01.

If no asterisks, no statistically significant differences from control mean.

[%]CV = (Control Group S.D./Control Group Mean) x 100.

		·
	Neurobehavioral Positive Control Data:	
	Functional Observational Battery	
	Mean Body Weights, Grip Strength	
Females	and Landing Foot Splay Values	Appendix KK

Observer 8 Test Article:		Group 1 Saline	Group 2 Chlorpromazine	Group 3 D-Amphetamine Sulfate	Group 4 Physostigmine
Body Weight	Mean S.D. N	268.7 19.5 5	298.0 55.7 5	276.1 27.3 5	280.3 12.4 5
Forelimb Grip Strength	Mean S.D. N %CV	1006.5 88.6 5 8.8	799.5 148.1 5	912.5 108.9 5	829.5 180.2 5
Hindlimb Grip Strength	Mean S.D. N %CV	735.0 117.9 5 16.0	605.5 158.6 5	571.0 101.9 5	695.5 238.0 5
Landing Foot Splay	Mean S.D. N %CV	6.4 1.6 3 25.0	6.2 0.3 3	6.0 - 1	5.1 0.6 2

If no asterisks, no statistically significant differences from control mean.

^{*}Significantly different from control mean; p≤0.05.

^{**}Significantly different from control mean; p≤0.01.

[%]CV = (Control Group S.D./Control Group Mean) x 100.

	Neurobehavioral Positive Control Data:	
	Functional Observational Battery	
	Mean Body Weights, Grip Strength	
Females	and Landing Foot Splay Values	Appendix KK

Observer 9 Test Article:		Group 1 Saline	Group 2 Chlorpromazine	Group 3 D-Amphetamine Sulfate	Group 4 Physostigmine
Body Weight	Mean S.D. N	315.9 18.3 5	313.5 25.5 5	310.8 48.3 5	311.1 11.1 5
Forelimb Grip Strength	Mean S.D. N %CV	539.5 292.8 5 54.3	963.0 456.9 5	823.0 330.6 5	606.5 327.3 5
Hindlimb Grip Strength	Mean S.D. N %CV	632.0 130.3 5 20.6	588.0 67.2 5	637.0 128.0 5	647.5 161.7 5
Landing Foot Splay	Mean S.D. N %CV	6.3 1.8 5 29.1	7.9 1.4 5	4.4 1.3 5	7.5 1.8 5

^{*}Significantly different from control mean; p≤0.05.

^{**}Significantly different from control mean; p≤0.01.

If no asterisks, no statistically significant differences from control mean.

[%]CV = (Control Group S.D./Control Group Mean) x 100.

	Neurobehavioral Positive Control Data:	
	Functional Observational Battery	
	Mean Body Weights, Grip Strength	
Repeats	and Landing Foot Splay Values	Appendix KK

Observer 4 Repeat Test Article:		Untreated Males	Untreated Females
Forelimb Grip Strength	Mean S.D. N %CV	1373.0 168.3 5 12.3	1167.0 293.8 5 25.2
Hindlimb Grip Strength	Mean S.D. N %CV	864.5 235.0 5 27.2	645.5 211.9 5 32.8
Observer 6 Repeat Test Article:			Untreated Females
Forelimb Grip Strength	Mean S.D. N %CV		970.5 154.9 10 16.0
Hindlimb Grip Strength	Mean S.D. N %CV		743.3 147.0 10 19.8
Observer 8 Repeat Test Article:		Saline Males	
Landing Foot Splay	Mean S.D. N %CV	9.5 0.9 10 9.8	

[%]CV = (Control Group S.D./Control Group Mean) x 100.

	Neurobehavioral Positive Control Data:	
	Functional Observational Battery	
	Mean Body Weights, Grip Strength	
Repeats	and Landing Foot Splay Values	Appendix KK

Observer 9 Repeat Test Article:		Untreated Females
Forelimb Grip Strength	Mean S.D.	882.0 186.0
	N %CV	10 21.1
Hindlimb Grip Strength	Mean S.D.	555.8 178.3
	N %CV	10 32.1

Neurobehavioral Positive Control Data:	
Functional Observational Battery	
Incidence Summary of Functional	
Observational Battery Evaluations	
Preface	Appendix KK

Corresponding test articles for each group were as follows:

Group 1 - Saline

Group 2 - Chlorpromazine

Group 3 - D-Amphetamine Sulfate

Group 4 - Physostigmine

For summarization purposes, comments describing location [i.e., forelimb, hindlimb, right, unilateral, etc.] are not presented in this appendix. These data are contained in the study raw data if needed.

When an animal received two scores during Open Field Evaluations of Gait and Posture (i.e. the animal was noted to be dragging it's body and it's limbs were splayed or dragging), the two scores were summarized individually. Therefore, the total incidence of scores may be greater than the number of animals examined.

	Neurobehavioral Positive Control Data:				
	Functional Observational Battery				
	Incidence Summary of Functional				
Males	Observational Battery Evaluations	A	рре	ndix	KK
Observer 1	Group:	1	2	3	4
Number of Animals Exam	nined	5	5	5	5
Home Cage Evaluations			•		
Posture	Sitting or Standing Normally Alert, Oriented Toward Observer	1 4	2 0	1 4	0 0
	Asleep	0	0	0	0
	Lying on Side	0	2	0	0
	Flattened	0	1	0	5
	Crouched	0	0	0	0
Vocalizations	Not Present	5	5	5	5
	Present	0	0	0	0
Palpebral Closure	Eyelids Open	5	0	5	5
	Eyelids Completely Closed	0	0 4	0 0	0 0
	Eyelids Slightly Drooping Eyelids Half Closed	0 0	1	0	0
Handling Evaluations					
Ease of Removal	Very Easy	3	4	2	5
	Easy	1	1	2	0
	Moderately Difficult	1 0	0	1 0	0 0
	Freezes Difficult	0	0	0	0
		_		-	
Ease of Handling	Normal (easy, alert)	4 1	5 0	4 1	5 0
	Moderately Difficult Freezes	0	0	0	0
	Difficult	Ö	0	Ö	0
	Totally limp	0	0	0	0
Chromodacryorrhea	Not Present	5	5	5	5
	Present	0	0	0	0
Lacrimation	Not Present	5	1	5	5
	Moderate	0	4	0	0
	Extreme	0	0	0	0
Coat	Normal	5 0	5 0	5 0	5 0
	Slightly Soiled Moderately Soiled	0	0	0	0
	Extremely Soiled	0	0	0	0
Salivation	Not Present	5	5	4	0
	Slight	0	0	1	3
	Moderate	0	0	0	2
	Extreme	0	0	0	0

	Neurobehavioral Positive Control Data:				
	Functional Observational Battery				
	•	ļ			
	Incidence Summary of Functional	.			
Males	Observational Battery Evaluations		Appe	ndix	KK
Observer 1	Group	1	2	3	4
Number of Animals Exam	nined	5	5	5	5
Open Field Evaluations					
Gait and Posture	Normal	5	0	4	0
	Ataxia	0	0	1	0
	Body Drags	0	1	0	3
	Limbs Splayed or Dragging Hunched Posture	0	5 0	0	5 0
	nulicilea Postale	U	U	U	U
Locomotion	Normal	5	0	1	0
	Increased Movement	0	0	1	0
	Decreased Movement	0	0	3	0
	None	0	5	0	5
Arousal	Normal	4	0	1	0
	Low, Slight Stupor	1	0	1	2
	Very Low, Stupor	0	5	1	3
	High, Slight Excitement, Tense	0	0	1	0
	Very High, Hyper-Alert	0	0	1	0
Piloerection	Not Present	5	5	5	5
	Present	0	0	0	0
Exophthalmia	Not Present	5	5	5	5
	Present	0	0	0	0
Feces	Number of Boluses	6	11	0	3
1 0003	Unformed Stool	Ö	0	Ö	Ö
Urine	Number of Pools	4	3	0	5
	Polyuria	0	0	0	0
Stereotypic Behavior					
Stereotypic Behavior	Not Present	5	5	1	5
	Present	0	0	4	0
Motor Movements					
Fasciculations	Not Present	5	5	5	0
	Slight	0	0	0	4
	Severe	0	0	0	1
Convulsions	Not Present	5	5	5	5
	Slight	ő	0	Ö	Ö
	Severe	0	0	0	0
Tremors	Not Present	5	5	5	5
Helliolo	Slight	0	0	0	0
	Severe	Ö	Ö	Ö	Ö
		-	-	-	

	Neurobehavioral Positive Control Data:				
	Functional Observational Battery				
	Incidence Summary of Functional				
Males	Observational Battery Evaluations	1	Арре	ndix	KK
Observer 1	Group:	1	2	3	4
Number of Animals Examined		5	5	5	5
Reflex Assessments					
Approach Response	Normal: Slowly Approaches, Sniffs and/or Turns Away	5	2	4	3
	No Reaction	0	3 0	1	2
	Freezes or Pulls Away Slightly Jumps or Turns Abruptly to Avoid, or attacks and/or bites	0	0	0	0 0
	cumpo di Tumo Fibrapay to Fitola, di attache anare bitee	•	Ū	•	·
Audition	Normal: Flinches or Flicks Ears	5	5	5	5
	No Reaction	0	0	0	0
	Exaggerated; Jumps, Flips, Bites	0	0	0	0
Pain	Normal: Turns/Bites or Walks Forward/Away	5	4	3	1
	No Reaction	0	1	2	4
	Apparent Increased Pain	0	0	0	0
Pupil Response	Pupil Constricts	5	4	5	0
The state of the s	No Constriction	0	0	0	0
	Miosis	0	1	0	5
	Mydriasis	0	0	0	0
Pinna	Ear Flattens Against Head	0	0	0	0
	Animal Shakes Head	5	5	5	5
	No Response	0	0	0	.0
Proprioception	Normal: Returns Leg to Original Position	5	5	5	5
	Returns Leg Only Partially to Original Position	0	0	0	0
	No Response	0	0	0	0
Air Righting Reflex	Normal: Lands on All Four Feet	5	1	5	0
	Slightly Uncoordinated	0	3	ō	3
	Lands on Side	0	1	0	2
	Lands on Back	0	0	0	0

	Neurobehavioral Positive Contro Functional Observational Bat	tery				
Males	Incidence Summary of Function Observational Battery Evaluat		A	agg	ndix	KK
Maioo	Obodivational Patienty Extra		<u> </u>	<u> </u>		
Observer 2		Group:	1	2	3	4
Number of Animals Exam	nined		5	5	5	5
Home Cage Evaluations						
Posture	Sitting or Standing Normally Alert, Oriented Toward Observer Asleep Lying on Side Flattened Crouched		4 1 0 0 0	3 1 0 0 1	1 4 0 0 0	0 0 0 3 2
Vocalizations	Not Present Present		5 0	5 0	5 0	5 0
Palpebral Closure	Eyelids Open Eyelids Completely Closed Eyelids Slightly Drooping Eyelids Half Closed		5 0 0	4 0 1 0	5 0 0 0	5 0 0 0
Handling Evaluations						
Ease of Removal	Very Easy Easy Moderately Difficult Freezes Difficult		0 5 0 0	1 4 0 0 0	4 1 0 0 0	4 1 0 0 0
Ease of Handling	Normal (easy, alert) Moderately Difficult Freezes Difficult Totally limp		5 0 0 0	5 0 0 0	5 0 0 0	5 0 0 0
Chromodacryorrhea	Not Present Present		5 0	4 1	5 0	5 0
Lacrimation	Not Present Moderate Extreme	٠	5 0 0	4 1 0	5 0 0	5 0 0
Coat	Normal Slightly Soiled Moderately Soiled Extremely Soiled		5 0 0	5 0 0 0	5 0 0	5 0 0
Salivation	Not Present Slight Moderate Extreme		5 0 0 0	5 0 0 0	4 1 0 0	0 2 1 2

	Neurobehavioral Positive Con	trol Data:				
	Functional Observational B	attony				
		•				
	Incidence Summary of Fund	ctional				
Males	Observational Battery Evalu	ations	A	apa	ndix	KK
Widios				1-1		
Observer 2		Group:	1	2	3	4
Number of Animals Examin	ned		5	5	5	5
Open Field Evaluations						
Gait and Posture	Normal		5	0	4	0
	Ataxia		0	0	1	0
	Body Drags		0	0	0	5
	Limbs Splayed or Dragging		0	5	0	3
	Hunched Posture		0	0	0	0
Locomotion	Normal		4	0	2	0
	Increased Movement		0	0	2	0
	Decreased Movement		1	0	1	0
	None		0	5	0	5
Arousal	Normal		4	0	2	0
	Low, Slight Stupor		1	0	1	0
	Very Low, Stupor		0	5	1	5
	High, Slight Excitement, Tense		0	0	0	0
	Very High, Hyper-Alert		0	0	1	0
Piloerection	Not Present		5	5	5	5
	Present		0	0	0	0
Exophthalmia	Not Present		5	5	5	5
•	Present		0	0	0	0
Feces	Number of Boluses		6	1	1	1
	Unformed Stool		0	0	0	0
Urine	Number of Pools		12	7	6	12
Office	Polyuria		0	0	0	0
Storoetumin Dahovior						
Stereotypic Behavior Stereotypic Behavior	Not Present		5	5	0	4
Stereotypic benavior	Present		Ö	ō	5	1
Motor Movements	Not Present		5	5	5	0
Fasciculations	Slight		0	5 0	0	4
	Severe		0	0	0	1
Convulsions	Not Present		5	5	5	5
	Slight		Ó	0	0	0
	Severe		0	0	0	0
Tremors	Not Present		5	5	5	5
	Slight		0	0	0	0
	Severe		0	0	0	0

	Neurobehavioral Positive Control Data:				
	Functional Observational Battery				
	Incidence Summary of Functional				
Males	Observational Battery Evaluations	_ A	ppe	ndix	(KK
Observer 2	Group:	1	2	3	4
Number of Animals Exami	ned	5	5	5	5
Reflex Assessments	A Company of the Comp	-	•	_	_
Approach Response	Normal: Slowly Approaches, Sniffs and/or Turns Away No Reaction	5 0	2 3	5 0	5 0
	Freezes or Pulls Away Slightly	0	0	Ō	Ō
	Jumps or Turns Abruptly to Avoid, or attacks and/or bites	0	0	0	0
Audition	Normal: Flinches or Flicks Ears	4	3	5	3
	No Reaction	1	2	0	0
	Exaggerated; Jumps, Flips, Bites	0	0	0	2
Pain	Normal: Turns/Bites or Walks Forward/Away	5	5	5	1
	No Reaction	0	0	0	4 0
	Apparent Increased Pain	0	U	U	
Pupil Response	Pupil Constricts	5	3	4	0
	No Constriction	0	0	0	0
	Miosis Mydriasis	0	2	1 0	5 0
	Wydnasis	Ū	Ū	Ü	Ū
Pinna	Ear Flattens Against Head	0	0	1	0
	Animal Shakes Head	5 0	5 0	4 0	5 0
	No Response	U	U	U	U
Proprioception	Normal: Returns Leg to Original Position	5	5	5	5
	Returns Leg Only Partially to Original Position	0	0	0	0
	No Response	0	0	0	U
Air Righting Reflex	Normal: Lands on All Four Feet	5	3	5	0
	Slightly Uncoordinated	0	2	0	5
	Lands on Side Lands on Back	0	0	0	0 0
	Edilus oil Dack	U	J	U	Ü

	Neurobehavioral Positive Control Data:				
	Functional Observational Battery				
	Incidence Summary of Functional				
Males	Observational Battery Evaluations	Α	ppe	ndix	KK
Observer 3	Group:	1	2	3	4
Number of Animals Exam	nined	5	5	5	5
Home Cage Evaluations Posture	Sitting or Standing Normally Alert, Oriented Toward Observer Asleep Lying on Side Flattened Crouched	2 3 0 0 0	3 0 0 0 2	0 5 0 0 0	1 0 0 1 3
Vocalizations	Not Present Present	5 0	5 0	5 0	5 0
Palpebral Closure	Eyelids Open Eyelids Completely Closed Eyelids Slightly Drooping Eyelids Half Closed	5 0 0 0	3 0 2 0	5 0 0	5 0 0 0
Handling Evaluations		•	•	-	-
Ease of Removal	Very Easy Easy Moderately Difficult Freezes Difficult	3 1 1 0 0	3 2 0 0	5 0 0 0	5 0 0 0
Ease of Handling	Normal (easy, alert) Moderately Difficult Freezes Difficult Totally limp	3 2 0 0	4 1 0 0	5 0 0 0	5 0 0 0
Chromodacryorrhea	Not Present Present	5 0	5 0	5 0	4 1
Lacrimation	Not Present Moderate Extreme	5 0 0	3 2 0	5 0 0	5 0 0
Coat	Normal Slightly Soiled Moderately Soiled Extremely Soiled	5 0 0	5 0 0	5 0 0 0	4 1 0 0
Salivation	Not Present Slight Moderate Extreme	5 0 0	5 0 0 0	5 0 0	2 1 2 0

	Neurobehavioral Positive Control Data: Functional Observational Battery				
	Incidence Summary of Functional				
Males	Observational Battery Evaluations		ppe	ndix	KK
Observer 3	Group:	1	2	3	4
Number of Animals Exam	nined	5	5	5	5
Open Field Evaluations		_	_	_	_
Gait and Posture	Normal Ataxia Body Drags Limbs Splayed or Dragging Hunched Posture	5 0 0 0	0 1 3 3 0	5 0 0 0	0 1 4 3 0
Locomotion	Normal Increased Movement Decreased Movement None	5 0 0 0	0 0 2 3	4 1 0 0	0 1 1 3
Arousal	Normal Low, Slight Stupor Very Low, Stupor High, Slight Excitement, Tense Very High, Hyper-Alert	5 0 0 0	0 2 3 0	1 0 0 4 0	0 2 3 0
Piloerection	Not Present Present	5 0	5 0	5 0	5 0
Exophthalmia	Not Present Present	5 0	5 0	5 0	5 0
Feces	Number of Boluses Unformed Stool	1 0	1 0	0 0	2 0
Urine	Number of Pools Polyuria	3 0	5 0	0 0	3 0
Stereotypic Behavior Stereotypic Behavior	Not Present Present	5 0	5 0	2	5 0
Motor Movements Fasciculations	Not Present Slight Severe	5 0 0	5 0 0	5 0 0	2 2 1
Convulsions	Not Present Slight Severe	5 0 0	5 0 0	5 0 0	5 0 0
Tremors	Not Present Slight Severe	5 0 0	5 0 0	5 0 0	4 0 1

	Neurobehavioral Positive Control Data:				
	Functional Observational Battery				
	Incidence Summary of Functional				
Males	Observational Battery Evaluations		рре	ndix	KK
Observer 3	Group:	1	2	3	4
Number of Animals Exami	ned	5	5	5	5
Reflex Assessments	N	-		•	•
Approach Response	Normal: Slowly Approaches, Sniffs and/or Turns Away No Reaction	5 0	1 4	2 3	3 2
	Freezes or Pulls Away Slightly	Ö	Ö	Ö	0
	Jumps or Turns Abruptly to Avoid, or attacks and/or bites	0	0	0	0
Audition	Normal: Flinches or Flicks Ears	5	4	5	4
	No Reaction	0	1	0	1
	Exaggerated; Jumps, Flips, Bites	0	0	0	0
Pain	Normal: Turns/Bites or Walks Forward/Away	5	5	5	3
	No Reaction	0	0	0	2 0
	Apparent Increased Pain	U	U	U	U
Pupil Response	Pupil Constricts	5	5	5	2
	No Constriction Miosis	0	0 0	0	1 2
	Mydriasis	0	0	0	0
Dinas	For Flottens Against Hood	0	0	1	0
Pinna	Ear Flattens Against Head Animal Shakes Head	5	5	4	5
	No Response	Ō	0	0	0
Proprioception	Normal: Returns Leg to Original Position	5	5	5	4
	Returns Leg Only Partially to Original Position	0	0	0	0
	No Response	0	0	0	1
Air Righting Reflex	Normal: Lands on All Four Feet	5	5	5	1
	Slightly Uncoordinated	0	0	0	2 2
	Lands on Side Lands on Back	0	0	0	0
	Editos off Edok	3	J	Ü	J

	Neurobehavioral Positive Control Functional Observational Batte Incidence Summary of Function	ery				
Males	Observational Battery Evaluati		A	рре	ndix	KK
Observer 4		Group:	1	2	3	4
Number of Animals Exam	nined		5	5	5	5
Home Cage Evaluations Posture	Sitting or Standing Normally Alert, Oriented Toward Observer Asleep Lying on Side Flattened Crouched		5 0 0 0 0	3 0 0 0 2 0	3 2 0 0 0	1 0 0 0 4 0
Vocalizations	Not Present Present		5 0	5 0	5 0	5 0
Palpebral Closure	Eyelids Open Eyelids Completely Closed Eyelids Slightly Drooping Eyelids Half Closed		5 0 0	5 0 0	5 0 0	5 0 0
Handling Evaluations Ease of Removal	Very Easy Easy Moderately Difficult Freezes Difficult		4 1 0 0	4 1 0 0 0	4 0 1 0	5 0 0 0
Ease of Handling	Normal (easy, alert) Moderately Difficult Freezes Difficult Totally limp		5 0 0 0	5 0 0 0	5 0 0 0	5 0 0 0
Chromodacryorrhea	Not Present Present		5 0	5 0	5 0	5 0
Lacrimation	Not Present Moderate Extreme		5 0 0	3 2 0	5 0 0	3 0 2
Coat	Normal Slightty Soiled Moderately Soiled Extremely Soiled		5 0 0	5 0 0 0	5 0 0 0	5 0 0
Salivation	Not Present Slight Moderate Extreme		5 0 0 0	5 0 0	5 0 0 0	0 2 3 0

	Neurobehavioral Positive Control Data	a:				
	Functional Observational Battery					
	Incidence Summary of Functional					
Males	Observational Battery Evaluations		A	рре	ndix	KK
	,					
Observer 4	G	roup:	1	2	3	4
Number of Animals Exam	nined		5	5	5	5
Open Field Evaluations						
Gait and Posture	Normal		5	2	5	0
	Ataxia		0	0 2	0 0	0 5
	Body Drags Limbs Splayed or Dragging		0	1	0	0
	Hunched Posture		0	ò	0	0
Locomotion	Normal		5	2	3	0
	Increased Movement		0	0 0	2 0	0 3
	Decreased Movement None		0	3	0	2
	None		Ü	Ŭ	Ŭ	_
Arousal	Normal		4	2	3	0
	Low, Slight Stupor		0	0	0	1
	Very Low, Stupor		0 1	3 0	0 2	4 0
	High, Slight Excitement, Tense Very High, Hyper-Alert		0	0	0	0
	very ringit, rryper-Alert		Ü	Ü	Ü	Ū
Piloerection	Not Present		5	5	4	5
	Present		0	0	1	0
Exophthalmia	Not Present		5	5	5	5
	Present		0	0	0	0
Feces	Number of Boluses		5	8	0	1
1 0000	Unformed Stool		0	Ō	0	0
Urine	Number of Pools		4 0	5 0	2	6
	Polyuria		U	U	U	0
Stereotypic Behavior						
Stereotypic Behavior	Not Present		5	5	3	4
	Present		0	0	2	1
Motor Movements						
Fasciculations	Not Present		5	5	5	0
	Slight		0	0	0	5
	Severe		0	0	0	0
Convulsions	Not Present		5	5	5	5
STITUIDIDID	Slight		0	Ö	Ö	Ö
	Severe		0	0	0	0
Tremors	Not Present		5	5	5	3
Helliole	Slight		0	0	0	1
	Severe		Ö	Ö	ō	1

	Neurobehavioral Positive Control Data:				
	Functional Observational Battery				
	Incidence Summary of Functional				
Males	Observational Battery Evaluations	4	nne	ndix	k KK
Widioo	Obool valional Dationy Evaluations		<u> </u>		
Observer 4	Group:	1	2	3	4
Number of Animals Examir	ned	5	5	5	5
Reflex Assessments Approach Response	Normal: Slowly Approaches, Sniffs and/or Turns Away	5	3	2	2
Approach Response	No Reaction	0	2	3	- 3
	Freezes or Pulls Away Slightly	0	0	0	0
	Jumps or Turns Abruptly to Avoid, or attacks and/or bites	0	0	0	0
Audition	Normal: Flinches or Flicks Ears	5	3	5	4
	No Reaction	0	2	0	0
	Exaggerated; Jumps, Flips, Bites	0	0	0	1
Pain	Normal: Turns/Bites or Walks Forward/Away	5	5	4	0
	No Reaction	0	0	1	5
	Apparent Increased Pain	0	0	0	0
Pupil Response	Pupil Constricts	5	5	5	0
	No Constriction	0	0	0	0
	Miosis	0	0	0	5
	Mydriasis	0	0	0	0
Pinna	Ear Flattens Against Head	0	1	1	0
	Animal Shakes Head	5	4	4	5
	No Response	0	0	0	0
Proprioception	Normal: Returns Leg to Original Position	5	5	5	5
	Returns Leg Only Partially to Original Position	0	0	0	0
	No Response	0	0	0	0
Air Righting Reflex	Normal: Lands on All Four Feet	5	4	5	0
5 5	Slightly Uncoordinated	0	0	0	1
	Lands on Side	0	1	0	3
	Lands on Back	0	0	0	1

	Neurobehavioral Positive Control Functional Observational Batt Incidence Summary of Function	ery onal				
Males	Observational Battery Evaluati	ions	P	рре	ndix	KK
Observer 5		Group:	1	2	3	4
Number of Animals Exam	nined		5	5	5	5
Home Cage Evaluations	5					
Posture	Sitting or Standing Normally Alert, Oriented Toward Observer Asleep Lying on Side Flattened Crouched		3 2 0 0 0	3 1 0 0 1	0 5 0 0 0	0 0 0 0 5
Vocalizations	Not Present Present		5 0	5 0	5 0	5 0
Palpebral Closure	Eyelids Open Eyelids Completely Closed Eyelids Slightly Drooping Eyelids Half Closed		5 0 0	3 0 1 1	5 0 0 0	5 0 0 0
Handling Evaluations Ease of Removal	Very Easy Easy Moderately Difficult Freezes Difficult		5 0 0 0	4 1 0 0	5 0 0 0	5 0 0 0
Ease of Handling	Normal (easy, alert) Moderately Difficult Freezes Difficult Totally limp		5 0 0 0	4 1 0 0	5 0 0 0	5 0 0 0
Chromodacryorrhea	Not Present Present		5 0	5 0	5 0	5 0
Lacrimation	Not Present Moderate Extreme		5 0 0	5 0 0	5 0 0	5 0 0
Coat	Normal Slightly Soiled Moderately Soiled Extremely Soiled		5 0 0	5 0 0	5 0 0	4 1 0 0
Salivation	Not Present Slight Moderate Extreme		5 0 0	5 0 0	4 1 0 0	0 2 3 0

		<u> </u>	T			
	Neurobehavioral Positive Contro					
	Functional Observational Batt	•	Ì			
	Incidence Summary of Function		١.			
Males	Observational Battery Evaluat	ions	A	ppe	ndix	KK
Observer 5		Group:	1	2	3	4
Number of Animals Exam	ined		5	5	5	5
Open Field Evaluations Gait and Posture	Normal Ataxia Body Drags Limbs Splayed or Dragging Hunched Posture		5 0 0 0	1 0 2 1 0	5 0 0 0	0 0 5 3
Locomotion	Normal Increased Movement Decreased Movement None		5 0 0 0	0 0 1 4	5 0 0 0	0 0 0 5
Arousal	Normal Low, Slight Stupor Very Low, Stupor High, Slight Excitement, Tense Very High, Hyper-Alert		4 1 0 0 0	0 0 5 0	0 1 0 4 0	0 0 5 0
Piloerection	Not Present Present		5 0	5 0	5 0	5 0
Exophthalmia	Not Present Present		5 0	5 0	5 0	5 0
Feces	Number of Boluses Unformed Stool		6 0	4 0	0	1 0
Urine	Number of Pools Polyuria		2 0	6 0	0	6 0
Stereotypic Behavior Stereotypic Behavior	Not Present Present		5 0	5 0	1 4	5 0
Motor Movements Fasciculations	Not Present Slight Severe		5 0 0	5 0 0	5 0 0	0 4 1
Convulsions	Not Present Slight Severe		5 0 0	5 0 0	5 0 0	5 0 0
Tremors	Not Present Slight Severe		5 0 0	5 0 0	5 0 0	5 0 0

^aGait for two Group 2 animals could not be determined because the animals did not move during the observation period.

	Neurobehavioral Positive Control Data:				
	Functional Observational Battery				
	Incidence Summary of Functional				
Males	Observational Battery Evaluations		Appe	ndix	KK
Observer 5	Group:	1	2	3	4
Number of Animals Examir	ned	5	5	5	5
Reflex Assessments	Name of Claudy Assessables Criffs and/or Trime Avery	5	1	4	1
Approach Response	Normal: Slowly Approaches, Sniffs and/or Turns Away No Reaction	0	4	1	4
	Freezes or Pulls Away Slightly	0	0	0	0
	Jumps or Turns Abruptly to Avoid, or attacks and/or bites	0	0	0	0
Audition	Normal: Flinches or Flicks Ears	5	5	4	4
	No Reaction	0	0	0	0
	Exaggerated; Jumps, Flips, Bites	0	0	1	1
Pain	Normal: Turns/Bites or Walks Forward/Away	5	5	4	0
	No Reaction	0	0	0 1	5 0
	Apparent Increased Pain	U	U	ı	U
Pupil Response	Pupil Constricts	5	5	5	0
	No Constriction	0	0	0	0 5
	Miosis Mydriasis	0	0	0	0
	•		Ŭ	_	-
Pinna	Ear Flattens Against Head	2	1	1	0
	Animal Shakes Head No Response	3 0	4 0	4 0	5 0
	No Nesponse	Ü	Ü	Ŭ	Ů
Proprioception	Normal: Returns Leg to Original Position	5	4	5	1
	Returns Leg Only Partially to Original Position	0	0 1	0	1 3
	No Response	U	•	Ū	J
Air Righting Reflex	Normal: Lands on All Four Feet	5	2	5	2
	Slightly Uncoordinated Lands on Side	0	3 0	0	2 0
	Lands on Side Lands on Back	0	0	0	1
		-	-	-	•

	Neurobehavioral Positive Control	Data:				
	Functional Observational Batt					
	Incidence Summary of Function	nal				
Females	Observational Battery Evaluati		Δ	ope	ndix	KK
	oboon anomal battery by		ــــــــــــــــــــــــــــــــــــــ	-,-,-		
Observer 6		Group:	1	2	3	4
Number of Animals Exam	ined		5	5	5	5
Home Cage Evaluations						
Posture	Sitting or Standing Normally Alert, Oriented Toward Observer Asleep Lying on Side Flattened		4 1 0 0	1 1 0 1 2	0 5 0 0	0 0 0 0 5
	Crouched		0	0	0	0
Vocalizations	Not Present Present		5 0	5 0	5 0	5 0
Palpebral Closure	Eyelids Open Eyelids Completely Closed Eyelids Slightly Drooping Eyelids Half Closed		5 0 0 0	4 0 1 0	5 0 0	5 0 0
Handling Evaluations						
Ease of Removal	Very Easy Easy Moderately Difficult Freezes Difficult		3 1 0 0	5 0 0 0	4 1 0 0	5 0 0 0
Ease of Handling	Normal (easy, alert) Moderately Difficult Freezes Difficult Totally limp		5 0 0 0	5 0 0 0	5 0 0 0	5 0 0 0
Chromodacryorrhea	Not Present Present		5 0	5 0	5 0	5 0
Lacrimation	Not Present Moderate Extreme		5 0 0	1 1 3	5 0 0	3 1 1
Coat	Normal Slightly Soiled Moderately Soiled Extremely Soiled		5 0 0 0	5 0 0 0	5 0 0 0	5 0 0
Salivation	Not Present Slight Moderate Extreme		5 0 0	5 0 0	5 0 0	2 2 1 0

	Neurobehavioral Positive Control Data: Functional Observational Battery Incidence Summary of Functional				
Females	Observational Battery Evaluations	l	Appe	endix	(KK
Observer 6	Grou	p: 1	2	3	4
Number of Animals Exam	nined	5	5	5	5
Open Field Evaluations		_		_	
Gait and Posture	Normal Ataxia Body Drags Limbs Splayed or Dragging Hunched Posture	5 0 0 0	1 0 1 3 1	5 0 0 0	0 0 3 3 0
Locomotion	Normal	5	1	0	0
	Increased Movement	0	0	3	0
	Decreased Movement	0	0	2	2
	None	0	4	0	3
Arousal	Normal Low, Slight Stupor Very Low, Stupor High, Slight Excitement, Tense Very High, Hyper-Alert	5 0 0 0	1 0 4 0	0 1 0 4 0	0 1 4 0
Piloerection	Not Present	5	5	5	5
	Present	0	0	0	0
Exophthalmia	Not Present	. 5	5	5	5
	Present	0	0	0	0
Feces	Number of Boluses	0	3	0	0
	Unformed Stool	0	0	0	0
Urine	Number of Pools	0	5	0	4
	Polyuria	0	0	0	0
Stereotypic Behavior	Not Present	5	5	0	3
Stereotypic Behavior	Present	0	0	5	2
Motor Movements Fasciculations	Not Present Slight Severe	5 0 0	5 0 0	5 0 0	0 1 4
Convulsions	Not Present	5	5	5	5
	Slight	0	0	0	0
	Severe	0	0	0	0
Tremors	Not Present	5	5	5	5
	Slight	0	0	0	0
	Severe	0	0	0	0

	Neurobehavioral Positive Control Data:				
	Functional Observational Battery				
	Incidence Summary of Functional				
Females	Observational Battery Evaluations	Α	Appendix KK		
Observer 6	Group:	1	2	3	4
Number of Animals Examined		5	5	5	5
Reflex Assessments Approach Response	Normal: Slowly Approaches, Sniffs and/or Turns Away	5	2	1	3
Approach Response	No Reaction	0	3	4	2
	Freezes or Pulls Away Slightly	0	0	0	0
	Jumps or Turns Abruptly to Avoid, or attacks and/or bites	0	0	0	0
Audition	Normal: Flinches or Flicks Ears	5	3	5	5
	No Reaction	0	2	0	0
	Exaggerated; Jumps, Flips, Bites	0	0	0	0
Pain	Normal: Turns/Bites or Walks Forward/Away	5	5	5	4
	No Reaction	0	0	0	1
	Apparent Increased Pain	0	0	0	0
Pupil Response	Pupil Constricts	5	5	5	0
	No Constriction	0	0	0	0
	Miosis Mydriasis	0	0	0	5 0
	Wydnasis	Ü	Ū	Ü	Ů
Pinna	Ear Flattens Against Head	0	0	2	0
	Animal Shakes Head	5	5	3 0	5
	No Response	0	0	U	0
Proprioception	Normal: Returns Leg to Original Position	5	3	5	3
	Returns Leg Only Partially to Original Position	0	1	0	1
	No Response	0	1	0	1
Air Righting Reflex	Normal: Lands on All Four Feet	5	3	5	0
	Slightly Uncoordinated	0	2	0	2
	Lands on Side	0	0	0	3 0
	Lands on Back	U	U	U	U

	Neurobehavioral Positive Contro Functional Observational Bat	tery				
Females	Incidence Summary of Function			Appendix KK		
remales	Observational Battery Evaluations				HUIX	INN
Observer 7		Group:	1	2	3	4
Number of Animals Examined		5	5	5	5	
Home Cage Evaluations						
Posture	Sitting or Standing Normally Alert, Oriented Toward Observer Asleep Lying on Side Flattened Crouched		2 3 0 0 0	3 0 0 0 2 0	1 4 0 0 0	3 1 0 0 1
Vocalizations	Not Present Present		5 0	5 0	5 0	5 0
Palpebral Closure	Eyelids Open Eyelids Completely Closed Eyelids Slightly Drooping Eyelids Half Closed		5 0 0 0	3 0 2 0	5 0 0	5 0 0 0
Handling Evaluations						
Ease of Removal	Very Easy Easy Moderately Difficult Freezes Difficult		5 0 0 0	5 0 0 0	4 1 0 0 0	5 0 0 0
Ease of Handling	Normal (easy, alert) Moderately Difficult Freezes Difficult Totally limp		5 0 0 0	5 0 0 0	4 1 0 0	5 0 0 0
Chromodacryorrhea	Not Present Present		5 0	4 1	5 0	5 0
Lacrimation	Not Present Moderate Extreme		5 0 0	2 1 2	5 0 0	5 0 0
Coat	Normal Slightly Soiled Moderately Soiled Extremely Soiled		5 0 0	5 0 0	5 0 0	5 0 0
Salivation	Not Present Slight Moderate Extreme		4 1 0 0	5 0 0 0	5 0 0	1 3 1 0

	Neurobehavioral Positive Control Functional Observational Batte Incidence Summary of Function	ry				
Females	Observational Battery Evaluation	ns	A	рре	ndix	KK
Observer 7		Group:	1	2	3	4
Number of Animals Exam	ined		5	5	5	5
Open Field Evaluations Gait and Posture	Normal Ataxia Body Drags Limbs Splayed or Dragging Hunched Posture		5 0 0 0	1 0 2 2 0	5 0 0 0	0 2 1 1
Locomotion	Normal increased Movement Decreased Movement None		2 1 2 0	0 0 1 4	0 5 0	0 0 5 0
Arousal	Normal Low, Slight Stupor Very Low, Stupor High, Slight Excitement, Tense Very High, Hyper-Alert		3 2 0 0	0 2 3 0	0 0 0 5 0	0 3 2 0
Piloerection	Not Present Present		5 0	5 0	5 0	5 0
Exophthalmia	Not Present Present		5 0	5 0	5 0	5 0
Feces	Number of Boluses Unformed Stool		0 0	8 0	0 0	0 0
Urine	Number of Pools Polyuria		0 0	4 0	1 0	4 0
Stereotypic Behavior Stereotypic Behavior	Not Present Present		5 0	5 0	0 5	1 4
Motor Movements Fasciculations	Not Present Slight Severe		5 0 0	5 0 0	5 0 0	0 5 0
Convulsions	Not Present Slight Severe		5 0 0	5 0 0	5 0 0	5 0 0
Tremors	Not Present Slight Severe		5 0 0	5 0 0	5 0 0	5 0 0

	Neurobehavioral Positive Control Data:				
	Functional Observational Battery				
	Incidence Summary of Functional				
Females	Observational Battery Evaluations	Α	рре	ndix	(KK
			<u> </u>		
Observer 7	Group:	1	2	3	4
Number of Animals Examin	ned	5	5	5	5
Reflex Assessments					
Approach Response	Normal: Slowly Approaches, Sniffs and/or Turns Away No Reaction	3 2	0 5	4 1	3 2
	Freezes or Pulls Away Slightly	0	0	0	0
	Jumps or Turns Abruptly to Avoid, or attacks and/or bites	0	0	0	0
Audition	Normal: Flinches or Flicks Ears	5	3	5	5
	No Reaction	0	2	0	0
	Exaggerated; Jumps, Flips, Bites	0	0	0	0
Pain	Normal: Turns/Bites or Walks Forward/Away	5	5	5	4
	No Reaction	0	0	0	1
	Apparent Increased Pain	0	0	0	0
Pupil Response	Pupil Constricts	5	4	5	0
	No Constriction	0	1	0	0
	Miosis	0	0	0	5 0
	Mydriasis	U	U	U	U
Pinna	Ear Flattens Against Head	3	0	4	0
	Animal Shakes Head	2	5	1	5
	No Response	0	0	0	0
Proprioception	Normal: Returns Leg to Original Position	5	4	5	5
	Returns Leg Only Partially to Original Position	0	1	0	0
	No Response	0	0	0	0
Air Righting Reflex	Normal: Lands on All Four Feet	4	5	4	1
-	Slightly Uncoordinated	1	0	1	2
	Lands on Side	0	0	0	2 0
	Lands on Back	U	U	U	U

	Neurobehavioral Positive Control Data:				
	Functional Observational Battery				
	Incidence Summary of Functional				1717
Females	Observational Battery Evaluations	A	ppe	ndix	KK
Observer 8	Group:	1	2	. 3	4
Number of Animals Exam	nined	5	5	5	5
Home Cage Evaluations Posture	Sitting or Standing Normally Alert, Oriented Toward Observer Asleep	0 4 1	4 0 0	0 4 0	3 1 0
	Lying on Side Flattened Crouched	0 0	0 1 0	0 0	0 1 0
Vocalizations	Not Present Present	5 0	5 0	5 0	5 0
Palpebral Closure	Eyelids Open Eyelids Completely Closed Eyelids Slightly Drooping Eyelids Half Closed	4 1 0 0	1 0 4 0	5 0 0 0	5 0 0 0
Handling Evaluations Ease of Removal	Very Easy Easy Moderately Difficult Freezes Difficult	3 2 0 0	4 1 0 0	4 1 0 0	3 2 0 0
Ease of Handling	Normal (easy, alert) Moderately Difficult Freezes Difficult Totally limp	4 1 0 0	5 0 0 0	5 0 0 0	5 0 0 0
Chromodacryorrhea	Not Present Present	5 0	4 1	5	5 0
Lacrimation	Not Present Moderate Extreme	5 0 0	2 2 1	5 0 0	5 0 0
Coat	Normal Slightly Soiled Moderately Soiled Extremely Soiled	5 0 0 0	5 0 0	5 0 0	5 0 0 0
Salivation	Not Present Slight Moderate Extreme	5 0 0	5 0 0	5 0 0	4 1 0 0

	Neurobehavioral Positive Contro Functional Observational Ba			•		
	Incidence Summary of Funct	ional				
Females	Observational Battery Evalua	itions	A	ppe	ndix	KK
Observer 8		Group:	1	2	3	4
Number of Animals Exam	nined		5	5	5	5
Open Field Evaluations Gait and Posture	Normal Ataxia Body Drags Limbs Splayed or Dragging Hunched Posture		5 0 0 0	1 0 3 2 0	5 0 0 0	4 0 1 0 0
Locomotion	Normal Increased Movement Decreased Movement None		5 0 0 0	0 0 4 1	1 4 0 0	4 0 1 0
Arousal	Normal Low, Slight Stupor Very Low, Stupor High, Slight Excitement, Tense Very High, Hyper-Alert		5 0 0 0	0 1 4 0 0	1 0 0 4 0	4 1 0 0
Piloerection	Not Present Present		5 0	5 0	5 0	5 0
Exophthalmia	Not Present Present		5 0	5 0	5 0	5 0
Feces	Number of Boluses Unformed Stool		0 0	4 0	0 0	0 0
Urine	Number of Pools Polyuria		0 0	0 0	0 0	1 0
Stereotypic Behavior Stereotypic Behavior	Not Present Present		5 0	5 0	1 4	4 1
Motor Movements Fasciculations	Not Present Slight Severe		5 0 0	5 0 0	5 0 0	4 1 0
Convulsions	Not Present Slight Severe		5 0 0	5 0 0	5 0 0	5 0 0
Tremors	Not Present Slight Severe		5 0 0	5 0 0	5 0 0	5 0 0

	Neurobehavioral Positive Control Data:				
	Functional Observational Battery				
	Incidence Summary of Functional				
Females	Observational Battery Evaluations	Α	\ppe	ndix	KK
Observer 8	Group:	1	2	3	4
Number of Animals Examir	ned	5	5	5	5
Reflex Assessments		_	•	_	_
Approach Response	Normal: Slowly Approaches, Sniffs and/or Turns Away No Reaction	5 0	3 2	5 0	5 0
	Freezes or Pulls Away Slightly	Ö	ō	Ö	Ö
	Jumps or Turns Abruptly to Avoid, or attacks and/or bites	0	0	0	0
Audition	Normal: Flinches or Flicks Ears	5	3	5	5
	No Reaction	0	2	0	0
	Exaggerated; Jumps, Flips, Bites	0	0	0	0
Pain	Normal: Turns/Bites or Walks Forward/Away	5	4	5	5
	No Reaction	0	1	0	0
	Apparent Increased Pain	0	0	0	0
Pupil Response	Pupil Constricts	5	3	4	2
	No Constriction	0	2	0	1
	Miosis Mydriasis	0	0	0 1	2 0
	iviyuriasis	U	U	'	U
Pinna	Ear Flattens Against Head	0	1	1	0
	Animal Shakes Head	5 0	4 0	4 0	5 0
	No Response	U	U	U	U
Proprioception	Normal: Returns Leg to Original Position	5	5	5	5
	Returns Leg Only Partially to Original Position	0	0	0	0 0
	No Response	U	U	U	U
Air Righting Reflex	Normal: Lands on All Four Feet	5	5	5	4
	Slightly Uncoordinated	0	0	0	0
	Lands on Side	0	0	0	1 0
	Lands on Back	U	U	U	U

	Neurobehavioral Positive Control Functional Observational Batt Incidence Summary of Function	ery				
Females	Observational Battery Evaluati			рре	ndix	KK
Observer 9		Group:	1	2	3	4
Number of Animals Exam	ined		5	5	5	5
Home Cage Evaluations						_
Posture	Sitting or Standing Normally Alert, Oriented Toward Observer		4 1	1 0	4 1	0 0
	Asleep		Ó	0	Ö	0
	Lying on Side		Ō	0	Ō	Ō
	Flattened		0	4	0	5
	Crouched		0	0	0	0
Vocalizations	Not Present		5	5	5	5
	Present		0	0	0	0
Palpebral Closure	Eyelids Open		5	1	5	5
'	Eyelids Completely Closed		0	0	0	0
	Eyelids Slightly Drooping		0	4	0	0
	Eyelids Half Closed		0	0	0	0
Handling Evaluations						
Ease of Removal	Very Easy		3	4	4	4
	Easy		2	1	1	1
	Moderately Difficult		0	0	0	0
	Freezes		0	0	0	0 0
	Difficult		U	U	U	U
Ease of Handling	Normal (easy, alert)		5	5	5	5
	Moderately Difficult		0	0	0	0
	Freezes		0	0	0	0
	Difficult		0	0	0	. 0
	Totally limp		U	U	U	U
Chromodacryorrhea	Not Present		5	4	5	5
	Present		0	1	0	0
Lacrimation	Not Present		5	1	5	3
	Moderate		0	2	0	2
	Extreme		0	2	0	0
Coat	Normal		5	5	4	2
	Slightly Soiled		0	0	1	3
	Moderately Soiled		0	0	0	0
	Extremely Soiled		0	0	0	0
Salivation	Not Present		5	5	5	3
	Slight		0	0	0	2
	Moderate		0	0	0	0
	Extreme		0	0	0	0

	Neurobehavioral Positive Contro Functional Observational Bat Incidence Summary of Function	tery				
Females	Observational Battery Evaluat	ions	1	урре	ndix	KK
Observer 9		Group:	1	2	3	4
Number of Animals Exam	ined		5	5	5	5
Open Field Evaluations Gait and Posture	Normal Ataxia Body Drags Limbs Splayed or Dragging Hunched Posture		5 0 0 0	1 0 2 3 0	5 0 0 0	0 2 3 1
Locomotion	Normal Increased Movement Decreased Movement None		3 0 2 0	0 0 1 4	1 4 0 0	0 0 3 2
Arousal	Normal Low, Slight Stupor Very Low, Stupor High, Slight Excitement, Tense Very High, Hyper-Alert		3 2 0 0	0 1 4 0	0 0 0 5	0 0 5 0
Piloerection	Not Present Present		5 0	5 0	5 0	5 0
Exophthalmia	Not Present Present		5 0	5 0	5 0	5 0
Feces	Number of Boluses Unformed Stool		0 0	3 0	0 0	0 0
Urine	Number of Pools Polyuria		0 0	2 0	0 0	0 0
Stereotypic Behavior Stereotypic Behavior	Not Present Present		5 0	5 0	0 5	0 5
Motor Movements Fasciculations	Not Present Slight Severe		5 0 0	5 0 0	5 0 0	0 3 2
Convulsions	Not Present Slight Severe		5 0 0	5 0 0	5 0 0	5 0 0
Tremors	Not Present Slight Severe		5 0 0	5 0 0	5 0 0	5 0 0

	Neurobehavioral Positive Control Data: Functional Observational Battery				
	•				
	Incidence Summary of Functional				1717
Females	Observational Battery Evaluations	<u>A</u>	ppe	ndix	KK.
Observer 9	Group:	1	2	3	4
Number of Animals Exami	ined	5	5	5	5
Reflex Assessments	November Claude Agreement on Chillian and Jan Turne Augus	2	0	5	3
Approach Response	Normal: Slowly Approaches, Sniffs and/or Turns Away No Reaction	3 2	0 5	0	2
	Freezes or Pulls Away Slightly	0	Ö	0	0
	Jumps or Turns Abruptly to Avoid, or attacks and/or bites	0	0	0	0
Audition	Normal: Flinches or Flicks Ears	5	1	5	3
	No Reaction	0	4	0	2
	Exaggerated; Jumps, Flips, Bites	0	0	0	0
Pain	Normal: Flinches or Flicks Ears	5	5	5	1
	No Reaction	0	0	0	4
	Exaggerated; Jumps, Flips, Bites	0	0	0	0
Pupil Response	Pupil Constricts	4	3	5	0
	No Constriction	1	1	0	0
	Miosis	0	1 0	0	5 0
	Mydriasis	U	U	U	U
Pinna	Ear Flattens Against Head	0	0	0	0
	Animal Shakes Head	5 0	5 0	5 0	5 0
	No Response	U	U		U
Proprioception	Normal: Returns Leg to Original Position	5	5	5	5
	Returns Leg Only Partially to Original Position	0	0	0	0
	No Response	0	0	0	0
Air Righting Reflex	Normal: Lands on All Four Feet	5	3	5	2
	Slightly Uncoordinated	0	1	0	2
	Lands on Side	0	1 0	0	1 0
	Lands on Back	U	U	U	J

Neurobehavioral Positive Control Data:	
Motor Activity	
Preface	Appendix KK

This is an abridged version of text and tables from Study No. H-34, 00-14501 as amended on 23 December 2008.

Table of Contents

Introduction	759
Materials and Methods	
Results	
Discussion	
Conclusion	
Mean Motor Activity Values	

Neurobehavioral Positive Control Data:	
Motor Activity	Appendix KK

1. INTRODUCTION

This study was designed to assess the effect of Amphetamine and Chlorpromazine on the locomotor activity in young rats 13, 17, 21, and 62 days of age. This work was performed in order to provide Positive Control data and was conducted according to test guidelines of the U.S. Environmental Protection Agency (Office of Prevention, Pesticides and Toxic Substances, Health Effects Guidelines, OPPTS 870.6300, Developmental Neurotoxicity, August 1998).

2. MATERIALS AND METHODS

2.1. REGULATORY REFERENCES

2.1.1. TEST GUIDELINES

This study was designed to provide positive control data for neurotoxicity screening studies in accord with the US EPA Health Effects Test Guidelines, OPPTS 870.6200 Neurotoxicity Screening Battery, August 1998.

2.1.2. GOOD LABORATORY PRACTICES

This study was conducted in compliance with Part 160 of 40 CFR (EPA/FIFRA Good Laboratory Practice Regulations) with the exception that assays to verify concentration, stability and homogeneity of the test articles in carriers were not performed.

2.1.3. ANIMAL WELFARE ACT COMPLIANCE

This study complied with all appropriate parts of the Animal Welfare Act regulations: 9 CFR Parts 1 and 2 final Rules, Federal Register, Volume 54, No. 168, August 31, 1989, pp. 36112-36163 effective October 30, 1989 and 9 CFR Part 3 Animal Welfare Standards; Final Rule, Federal Register, Volume 56, No. 32, February 15, 1991, pp. 6426-6505 effective March 18, 1991.

2.2. FACILITIES MANAGEMENT/ANIMAL HUSBANDRY

Currently acceptable practices of good animal husbandry were followed, e.g., *Guide for the Care and Use of Laboratory Animals*; National Academy Press, 1996. Huntingdon Life Sciences is fully accredited by the

Neurobehavioral Positive Control Data:	
Motor Activity	Appendix KK

Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC).

2.3. STUDY MANAGEMENT

2.3.1. SPONSOR AND TESTING FACILITY

Huntingdon Life Sciences Mettlers Road PO Box 2360 East Millstone, NJ 08875-2360

2.3.2. STUDY DIRECTOR¹

Suzanne R. Thornton, Ph.D. P.J. Shem Patyna, Ph.D. George L. Brown, M.S. Edward R. Frizell, M.D., Ph.D.

2.4. EXPERIMENTAL DESIGN

		Dosage	Dose Volume	Treatment	Locomotor Activity	Number of
Group	Treatment	(mg/kg)	(mL/kg)	Schedule	Assessment	Animals
Iª	Control	0	5	Postnatal Day 13, 17, 21, 62	Approximately 30 minutes after injection	10/sex
II	Amphetamine	2.0	5	Postnatal Day 13, 17, 21, 62	Approximately 30 minutes after injection	10/sex
Ш	Chlorpromazine	10.0	5	Postnatal Day 13, 17, 21, 62	Approximately 30 minutes after injection	10/sex

^aControl animals were administered 0.9% saline at the same dose volume as the test articles.

¹Suzanne R. Thornton, Ph.D. served as Study Director during the testing portion of Study No. 00-14501. Effective 19 May 2000, P.J. Shem Patyna assumed the responsibilities of Study Director. George Brown, M.S. assumed all Study Director responsibilities following Dr. Patyna's departure from Huntingdon Life Sciences, effective 22 December 2000. Effective 10 Nov 2008, Edward R. Frizell, M.D., Ph.D. assumed Study Director responsibilities for Study No. 00-14501 for the purpose of amending the Final Report only.

Neurobehavioral Positive Control Data:	
Motor Activity	Appendix KK

2.5. STUDY DATES

2.5.1. STUDY INITIATION

10 February 2000

2.5.2. DATE OF ANIMAL RECEIPT

11 February 2000

2.5.3. DOSE INITIATION DATES FOR LOCOMOTOR ACTIVITY ASSESSMENTS

Postnatal Day 13: 14 February 2000 Postnatal Day 17: 18 February 2000 Postnatal Day 21: 22 February 2000 Postnatal Day 62: 03 April 2000

2.5.4. TRANSFER OF ANIMALS TO EXTRA RAT COLONY

04 April 2000

2.5.5. STUDY COMPLETION

13 March 2001 (Date Study Director signed the Final Report)

2.6. TEST ARTICLES

2.6.1. AMPHETAMINE

Supplier

Sigma 3050 Spruce Street St. Louis, MO 63103

Lot Number

69H1239

Purity

Assume 100%

Neurobehavioral Positive Control Data:	
Motor Activity	Appendix KK

Date Received

07 January 2000

Expiration Date

June 2001

Description

Powder

Storage

Room temperature

Archival Sample

A sample of amphetamine is stored in the Archives of the Testing Facility under conditions specified for test article storage.

Disposition of Unused Test Article

Unused test article was used as the archival sample for this test article.

2.6.2. CHLORPROMAZINE

Supplier

Sigma 3050 Spruce Street St. Louis, MO 63103

Lot Number

48H1403

Purity

98%

Neurobehavioral Positive Control Data:	
Motor Activity	Appendix KK

Date Received

01 December 1999

Expiration Date

April 2001

Description

White/White with a yellow cast, powder

Characteristics

Light sensitive

Storage

Room temperature, protected from light

Archival Sample

A sample of chlorpromazine is stored in the Archives of the Testing Facility under conditions specified for test article storage.

Disposition of Unused Test Article

Unused test article was used as the archival sample for this test article.

2.7. CONTROL ARTICLE

0.9 % Saline

2.7.1. SUPPLIER

VWR Scientific Products 200 Center Square Rd. Bridgeport, NJ 08014

2.7.2. LOT/BATCH NUMBER

G-949941 / 173-191

Neurobehavioral Positive Control Data:	
Motor Activity	Appendix KK

2.7.3. DATE RECEIVED

04 June 1999

2.7.4. EXPIRATION DATE

October 2000

2.7.5. DESCRIPTION

Clear liquid

2.7.6. STORAGE

Room temperature

2.7.7. ARCHIVAL SAMPLE

A sample of the control article is stored in the Archives of the Testing Facility under conditions specified for test article storage.

2.8. TEST ARTICLE AND CONTROL ARTICLE PREPARATION

2.8.1. CONTROL ARTICLE PREPARATION

Control article was used neat; as received.

2.8.2. TEST ARTICLE PREPARATION

Appropriate amounts of test article were mixed with 0.9% saline to achieve the desired concentrations in a graduated cylinder, capped, inverted and shaken well prior to use. Fresh dosing solutions were prepared either 1 or 3 days prior to or the day of dose administration and were refrigerated (2-8°C) when not in use.

2.9. ANALYSIS OF DOSING SUSPENSIONS

Analyses were not performed in this study.

	Neurobehavioral Positive Control Data:	
	Motor Activity	Appendix KK

2.10. TEST ANIMALS

2.10.1. SPECIES

Albino Rats [Crl: CD[®] (SD) IGS BR]

2.10.2. SUPPLIER

Charles River Laboratories Kingston, NY facility

2.10.3. JUSTIFICATION FOR TEST SYSTEM SELECTION

The rat is a rodent animal model commonly utilized in reproduction studies as recommended in the referenced guidelines.

2.10.4. ANIMAL RECEIPT INFORMATION

Purchased

8 litters (dam and 5 pups/sex/litter)

Placed on study

6 litters (dam and 5/sex/litter)

2.10.5. AGE OF PUPS AT RECEIPT

Pups were received on Postnatal Day 10.

2.10.6. ACCLIMATION PERIOD

All female rats and their litters were acclimated from the time they were received until locomotor activity assessment began on the pups.

2.11. SELECTION/GROUP ASSIGNMENT

More animals than required for the study were purchased and acclimated. Animals considered suitable for the study on the basis of pretest physical examinations were randomized into groups at receipt using a method which ranked the Postnatal Day 10 body weights and randomly assigned each within the block of three into groups. Animals were replaced as required based on physical examinations and/or body weight change up to Postnatal Day 13 to achieve the desired number of animals (10/sex/group).

Neurobehavioral Positive Control Data:	
Motor Activity	Appendix KK

Disposition of all animals not utilized in this study is maintained in the study file.

2.12. ANIMAL IDENTIFICATION

Each female was ear tagged (metal ear tag) with a unique identification number by the supplier. Each Postnatal Day 10 pup was uniquely identified by tattoo upon receipt. At weaning (Postnatal Day 21), each pup was ear-tagged with a number assigned by the Testing Facility upon receipt. These numbers plus the study number served as each animal's unique and permanent identification for the duration of the study. Each cage was also provided with a cage card which contained the study number and animal number.

2.13. VETERINARY CARE

Animals were monitored by the technical staff for any conditions requiring possible veterinary care.

2.14. ANIMAL HUSBANDRY

2.14.1. **HOUSING**

Each female rat and litter, from the time of receipt through Postnatal Day 20 were individually housed in a covered, clear plastic "shoebox" with bedding. From Postnatal Day 21 until Postnatal Day 28, the weanling pups (two or three of the same sex) were housed in stainless steel suspended cages with wire mesh floors and fronts. After Postnatal Day 28, and for the remainder of the study, animals were individually housed in stainless steel suspended cages with wire mesh floors. A glass food jar with a stainless steel lid, and food saver, was secured in each cage. Clean food jars and fresh feed were provided at least weekly.

2.14.2. FEED

Certified Rodent Diet, No. 5002; (Meal) (PMI Nutrition International, St. Louis, MO) was provided *ad libitum*.

Analytical certification of batches of feed, provided by the manufacturer, were maintained on file at the Testing Facility. Feed

Neurobehavioral Positive Control Data:	
Motor Activity	Appendix KK

was analyzed for nutritional content (protein, fat, fiber), inorganic constituents (arsenic, cadmium, calcium, lead, mercury, phosphorus, selenium), organophosphates (diazinon, ethion, methyl parathion, thimet, trithion, disulfoton, malathion, parathion, thiodan), and pesticides (aldrin, beta-BHC, DDE, delta-BHC, endrin, heptachlor, lindane, mirex, alpha-BHC, chlordane, total DDT, dieldrin, HCB, heptachlor epoxide, methoxychlor), plus PCB, and aflatoxin.

There were no known contaminants in the feed which were considered capable of interfering with the results of this study.

2.14.3. WATER

Facility water was supplied by Elizabethtown Water Company, (Westfield, NJ); and was provided *ad libitum* to individual animal cages via an automated watering system.

Monthly water analyses were conducted by Elizabethtown Water Company, Westfield, New Jersey (Raritan-East Millstone Plant) to ensure that water meets standards specified under the EPA Federal Safe Drinking Water Act Regulations (40 CFR part 141). Water analyses, provided by the supplier, were maintained on file at the Testing Facility. In addition, water samples were collected biannually from representative rooms in the Testing Facility; chemical and microbiological water analyses were conducted on these samples by a subcontract laboratory. Results were maintained on file at the Testing Facility. There are no known contaminants in the water which are expected to interfere with this study.

2.14.4. BEDDING ARTICLE

Ground corncob bedding (Bed-O'-Cobs® 1/4 inch Irradiated, The Andersons, Maumee, Ohio) was provided for each female rat and litter from time of receipt through Postnatal Day 20. Fresh bedding was provided weekly and as needed.

Bedding was analyzed for inorganic constituents (arsenic, bismuth, cadmium, lead, magnesium, manganese, mercury, nickel, zinc), organophosphates (diazinon, ethion, methyl parathion, trithion,

Neurobehavioral Positive Control Data:	
Motor Activity	Appendix KK

malthion, ethyl parathion), and pestcides (aldrin, beta-BHC, DDE, delta-BHC, endrin, heptchlor, lindane, mirex, alpha-BHC, chlordane, total DDT, dieldrin, HCB, heptachlor epoxide, methoxychlor), plus PCB, and aflatoxin. There were no known contaminants in the bedding which were expected to interfere with the results of this study. Contaminant analyses were performed periodically. Results of the bedding analysis were maintained on file at the Testing Facility.

2.14.5. ENVIRONMENTAL CONDITIONS

Light/Dark Cycle

Twelve-hour light/dark cycle provided via automatic timer.

Temperature

Temperature was monitored and recorded twice daily and maintained within the desired ranges to the maximum extent possible.

Desired:

18 - 26°C

Actual:

21 - 24°C

Relative Humidity

Relative humidity was monitored and recorded once daily and maintained within the desired ranges to the maximum extent possible.

Desired:

30 - 70%

Actual:

20 - 68%

Relative humidity was not within the specified range on eight occasions during this study (20-28%). This was not considered to have affected the integrity of the study.

2.15. TEST ARTICLE ADMINISTRATION

2.15.1. ROUTE OF ADMINISTRATION

Intraperitoneal injection

Neurobehavioral Positive Control Data:	
Motor Activity	Appendix KK

2.15.2. JUSTIFICATION FOR ROUTE OF ADMINISTRATION

The intraperitoneal route provides rapid test article absorption and has been used in previous studies with the test articles.

2.15.3. FREQUENCY AND DURATION OF ADMINISTRATION

The test articles (Amphetamine, Chlorpromazine) and control article were administered to pups on Postnatal Days 13, 17, 21, and 62. Each animal was dosed more than once per week with a washout period of 4 to 41 days between doses.

2.15.4. ADMINISTRATION OF TEST AND/OR CONTROL ARTICLE

The test articles (Amphetamine, Chlorpromazine) and the control article (saline) were administered by intraperitoneal injection into the abdominal cavity near the inguinal region using a sterile needle and syringe of appropriate size. Doses were calculated using the most recent body weights available. A volume of 5 mL/kg of body weight was administered.

2.16. EXPERIMENTAL EVALUATION

2.16.1. VIABILITY OBSERVATIONS (CAGESIDE)

Observations for mortality, morbidity and signs of severe toxic or pharmacological effects were made at least twice daily (morning and afternoon) for the female rats and pups.

2.16.2. CLINICAL OBSERVATIONS

A detailed physical examination was given to all female rats and pups upon receipt. The rat pups had a detailed physical examination on the day of locomotor activity behavioral assessment and weekly during the postweaning period until they were placed in a colony.

2.16.3. BODY WEIGHTS

Body weights were recorded for pups on Postnatal Days 10, 13, 17, 21, 62, and weekly during the postweaning period.

Neurobehavioral Positive Control Data:	
Motor Activity	Appendix KK

2.17. LITTER EVALUATIONS

2.17.1. OBSERVATIONS

Litters were observed and each pup was sexed at the time of receipt. Pups in the litter were counted on Postnatal Days 10,13,17, and 21.

2.17.2. WEANING

Pups were weaned on Postnatal Day 21 and housed two or three of the same sex per cage.

2.17.3. LOCOMOTOR ACTIVITY BEHAVIORAL ASSESSMENT

The locomotor activity assessment was measured 10 pups/sex/group on Postnatal Days 13, 17, 21 and 62. On each day of testing, 10 rat pups/sex/group were adminstered either vehicle, amphetamine, or chlorpromazine. Approximately thirty minutes after the injection they were placed in a clear plastic shoebox cage equipped with a 5-beam automated Photobeam Activity System (PAS; San Diego Instruments, Inc.). Activity was monitored during a 60-minute session composed of 12, five-minute intervals. A record was made of the total number of photobeam breaks which occurred during each of the 12, five-minute intervals. The locomotor activity was assessed using a repeated measures analysis of variance to determine if there was a test article effect. Rat pups were randomized so that there was an equal representation of the treatment groups during each locomotor activity session.

Temperature

Temperature was monitored and recorded twice daily, just prior to the first evaluation and just after the last evaluation.

Desired:

18 to 26°C

Actual:

22 to 24°C

	Neurobehavioral Positive Control Data:	;
	Motor Activity	Appendix KK

Relative Humidity

Relative humidity was monitored and recorded twice daily, just prior to the first evaluation and just after the last evaluation.

Desired:

30 to 70%

Actual:

29 to 56%

Noise Level

Noise level was monitored using a Digital Sound Level Meter, Model 840029 (Sper Scientific, Ltd., Scottsdale, Arizona) and recorded twice daily, just prior to the first evaluation and just after the last evaluation.

Desired:

55 to 65 dB

Actual:

60.1 to 61.4 dB

Illumination

Illumination was monitored using a Photometer 1 (Quantum Instruments, Inc., Garden City, New York) and recorded twice daily, just prior to the first evaluation and just after the last evaluation.

Desired:

< 80 footcandles

Actual:

36.5 to 55.3 footcandles

2.18. POSTMORTEM

No postmortem examinations were performed as all animals were transferred to the in-house rat colony.

2.19. DISPOSITION OF ANIMALS

After the pups were weaned, the female rats were euthanized via an overdose of carbon dioxide and discarded. After the locomotor activity behavioral assessment on 62, the rats were transferred to the in-house rat colony.

Neurobehavioral Positive Control Data:	
Motor Activity	Appendix KK

2.20. PRESERVATION OF RECORDS AND SPECIMENS

All data documenting experimental details and study procedures and observations were recorded and maintained as raw data.

At the completion of the study, all reports, raw data, protocol and amendments, and retained samples will be maintained in the Testing Facility's Archives.

2.21. PROTOCOL DEVIATIONS

The following protocol deviations occurred during the study, but were not considered to have compromised the validity or integrity of the study.

- 1. Litter counts were not recorded on Postnatal Days 10, 13, 17, and 21 due to technician error. However, individual body weights recorded for those days (Postnatal Days 10, 13, 17, and 21) are considered documentation for the count.
- 2. Documentation of pups not selected for this study was omitted from the data due to technician error.
- 3. As there is no documentation in the study data indicating the age of the dams at time of receipt at the Testing Facility, it can not be determined that the protocol requirement that the dams be 75-90 days old was met.
- 4. Protocol specified that the washout period between doses would be approximately 2 days even though it also specified dosing would occur on Postnatal Days 13, 17, 21 and 60 (±2) days. The washout periods in this study ranged from 4 to 41 days.
- 5. Fresh dosing solutions were prepared either 1 or 3 days prior to or the day of dose administration rather than once weekly as specified in the protocol.

2.22. COMPUTER SYSTEM

The Toxicology Analysis System Customized - Reproduction Module (TASC-R), version 1.1.13, from Pathologist Associates International (PAI), Frederick, Maryland, was the computer software system utilized during the conduct of this study for randomizations, data collection, reporting, and statistical analysis.

Neurobehavioral Positive Control Data:	
Motor Activity	Appendix KK

2.23. STATISTICAL EVALUATIONS

The locomotor activity behavioral assessments were analyzed for each period using split-plot repeated measures analysis of variance with model terms for group, animal within group, interval and group by interval If the group by treatment interaction was statistically interaction. significant, indicating non-parallelism in the behavioral profile between groups, a separate one-way ANOVA for group effects was performed at each interval. If the response data passed on the parallel hypothesis, an ANOVA (using summed responses over intervals for each animal) was used to test for the overall treatment effect with respect to the level hypothesis. If any significant overall treatment group effect was found by any of the above ANOVAs, Dunnett's t-test was used to find groups that differed from control. No investigation of model fit was requested or performed. Analyses were performed for sexes separately and combined. Treatment group effects were deemed significant at the α =0.05 level. Plots, tables, listings, and analyses were generated using SAS® version 6.12 for WINDOWS. Analyses were conducted by CATO Research, 200 Westpark Corporate Center, 4364 South Alston Avenue, Durham, NC 27713-2280.

3. RESULTS

Results from pups treated with 2 mg/kg Amphetamine (Group II) indicate a statistically significant increase in locomotor activity for male and female rats combined, on Postnatal Days 13, 17, 21, and 62, when compared to the control group. Statistically significant increases in locomotor activity were observed for Group II male and female rats individually, on Postnatal Day 21 and 62 only.

Results from pups treated with 10 mg/kg Chlorpromazine (Group III) indicated a statistically significant decrease in locomotor activity for male and female rats combined, on Postnatal Days 17, 21, and 62, when compared to the control group. Statistically significant decreases in locomotor activity were observed for Group III male and female rats individually, on Postnatal Days 17, 21, and 62 only.

Neurobehavioral Positive Control Data:	
Motor Activity	Appendix KK

4. DISCUSSION

This study evaluated the behavioral effects of Amphetamine and Chlorpromazine on locomotor activity of young male and female rats, in order to generate positive control data for future developmental neurotoxicity studies.

Rats dosed and tested on Postnatal Day 17, 21, and 62 responded to test article treatment, with increased activity for Group II (2 mg/kg amphetamine) and decreased activity for Group III (10 mg/kg chlorpromazine). Amphetamine or Chlorpromazine behavioral effects were observed equally in both male and female rats in the treatment groups.

Rats treated with Amphetamine exhibited locomotor activity similar to control levels at the beginning of the testing period. Unlike the control animals, the Amphetamine treated animals did not habituate, and remained in a more active state for the duration of the 60-minute testing period.

Rats treated with Chlorpromazine exhibited decreased locomotor activity compared to control levels at the beginning of the testing period. Unlike the control animals, the Chlorpromazine treated animals did not habituate, and remained in a less active state for the duration of the 60-minute testing period.

The pups dosed and tested on Postnatal Day 13 did not respond to treatment as dramatically as in latter dosing/testing days. The lack of statistically significant locomotor activity differences in the Postnatal Day 13 treatment groups may stem from the low basal level of activity in pups of such a young age. The presence of age-related differences in locomotor activity in this study suggests the importance of evaluating behavioral endpoints at several different time-points, when testing for developmental neurotoxicity.

5. CONCLUSION

Under the conditions of this study, 2 mg/kg of Amphetamine or 10 mg/kg of Chlorpromazine, administered to young male and female rats on Postnatal Days 13, 17, 21, and 62, via intraperitoneal injection produced statistically significant behavioral effects on locomotor activity. Based on these results, it was shown that both amphetamine and chlorpromazine are excellent model compounds for the generation of locomotor activity alterations in young Sprague Dawley rats.

 Neurobehavioral Positive Control Data:	
Motor Activity	
Mean Motor Activity Values	
Preface	Appendix KK

Summary of Statistical Results for Motor Activity Data

Post	Sex	Parallel	Level	Significant Pairwise Results*
Natal		Hypothesis	Hypothesis	
Day		(p-value)	(p-value)	
13	Male	0.1824	0.3593	NA
	Female	0.1097	0.0723	NA
	Combined	0.0074	NA	1:NS; 2:NS;10:II>I; 11:II>I; 12:II>I
17	Male	0.0203	NA	1:I>III; 2:I>III; 4:I>III
	Female	0.0001	NA	1:I>III; 2:I>III; 3:I>III; 4:NS; 5:I>III
	Combined	0.0001	NA	1:I>III; 2:I>III; 3:I>III; 4:I>III; 5:I>III;
				8:NS; 10:NS; 11:NS; 12:II>I
21	Male	0.0001	NA	1 :II>I, I>III; 2 :II>I, I>III; 3 :II>I, I>III;
				4:II>I; 5:II>I; 6:II>I; 7:II>I; 8:II>I;
				9:II>I; 10:II>I; 11:II>I; 12:II>I
	Female	0.0001	NA	1 :II>I, I>III; 2 :II>I, I>III; 3 :II>I, I>III;
				4:II>I; 5:II>I; 6:II>I; 7:II>I; 8:II>I;
				9:II>I; 10:II>I; 11:II>I; 12:II>I
	Combined	0.0001	NA	1:II>I, I>III; 2:II>I, I>III; 3:II>I, I>III;
				4:II>I; 5:II>I; 6:II>I, I>III; 7:II>I;
				8:II>I; 9:II>I; 10:II>I; 11:II>I; 12:II>I
62	Male	0.0001	NA	1:I>III; 2:I>III; 3:I>III; 4:I>III; 5:I>III;
				6:II>I, I>III; 7:II>I, I>III; 8:II>I, I>III;
				9:II>I, I>III; 10:II>I, I>III; 11:II>I;
				12:II>I
	Female	0.0001	NA	1 :I>III; 2 :I>III; 3 :I>III; 4 :I>III; 5 :II>I,
			:	I>III; 6:II>I, I>III; 7:I>III; 8:II>I, I>III;
				9:II>I, I>III; 10:II>I, I>III; 11:II>I;
				12: II>I, I>III
	Combined	0.0001	NA	1:I>III; 2:I>III; 3:I>III; 4:I>III; 5:II>I,
				I>III; 6:II>I, I>III; 7:II>I, I>III; 8:II>I,
				I>III; 9:II>I, I>III; 10:II>I, I>III;
				11:II>I, I>III; 12:II>I, I>III

^{*}Only intervals with significant differences between treatments are reported.

NA = Not applicable; NS = No significant differences from control

x: a>b indicates mean for group a significantly greater than mean for group b in interval x.

I = control, II = amphetamine, III = chlorpromazine

	Neurobehavioral Positive Control Data:	
	Motor Activity	
1.	Mean Motor Activity Values	
Males	Postnatal Day 13	Appendix KK

	Interval											
	1	2	3	4	5	6	7	8	9	10	11	12
Group	i – Con	trol										
Mean	27.70	12.30	18.40	23.60	10.60	14.10	12.90	7.40	7.10	9.40	8.80	9.90
S.D.	21.88	15.32	30.96	40.81	12.43	20.80	12.81	10.24	11.32	10.15	7.18	11.90
N	10	10	10	10	10	10	10	10	10	10	10	10
Group	ll – 2.0	mg/kg .	Amphe	tamine	!							
Mean	37.70	21.10	18.40	17.20	10.20	9.20	6.10	8.10	19.60	36.70	28.80	41.60
S.D.	39.38	25.14	29.86	25.17	14.29	11.15	8.48	9.05	20.01	43.02	39.89	58 <i>.</i> 17
N	10	10	10	10	10	10	10	10	10	10	10	10
Group III – 10.0 mg/kg Chlorpromazine												
Mean	14.80	8.10	8.80	12.30	7.40	5.70	8.20	25.70	12.80	12.00	8.60	17.70
S.D.	26.95	15.17	13.21	21.67	11.84	13.05	11.38	55.13	22.52	27.05	27.20	54.93
N	10	10	10	10	10	10	10	10	10	10	10	10

	Neurobehavioral Positive Control Data:	
	Motor Activity	
	Mean Motor Activity Values	
Females	Postnatal Day 13	Appendix KK

	Interval											
	1	2	3	4	5	6	7	8	9	10	11	12
Group	I – Con	trol										,
Mean	25.00	14.70	17.10	20.90	16.60	14.30	9.70	6.20	12.50	10.00	7.60	5.70
S.D.	32.00	17.81	24.47	19.77	19.29	14.19	11.61	8.98	13.82	10.72	11.35	4.27
N	10	10	10	10	10	10	10	10	10	10	10	10
Group Mean	II – 2.0 36.30	mg/kg 19.40	•	tamine 24.00	30.40	26.40	41.30	33.20	38.90	52.00	49.90	31.90
S.D.	45.41	26.53	40.16	34.50	51.56	49.40	65.11	55.36	74.84	87.22	55.36	38.23
N	10	10	10	10	10	10	10	10	10	10	10	10
Group	III – 10.	0 mg/k	g Chloi	proma	zine							
Mean	4.00	1.50	11.40	24.30	0.80	2.50	3.50	4.90	3.10	5.10	6.20	1.90
S.D.	8.07	3.75	19.41	50.71	1.62	4.06	5.76	9.34	5.51	10.79	10.25	2.88
N	10	10	10	10	10	10	10	10	10	10	10	10

	Neurobehavioral Positive Control Data:	
	Motor Activity	
	Mean Motor Activity Values	
Males	Postnatal Day 17	Appendix KK

	Interval											
	1	2	3	4	5	6	7	8	9	0	11	12
Group	I – Con	trol										
Mean	75.00	55.80	49.40	50.90	36.30	36.00	39.10	35.20	32.00	31.00	33.20	14.50
S.D.	42.95	49.40	33.92	40.33	35.24	38.39	43.53	32.15	39.34	39.73	39.81	18.33
N	10	10	10	10	10	10	10	10	10	10	10	10
Group	II – 2.0	mg/kg	Amphe	tamine								
Mean	52.00	30.80	42.70	41.20	29.90	26.50	32.40	52.40	64.10	62.00	51.60	28.80
S.D.	45.11	34.37	45.49	30.49	26.91	30.95	34.10	46.85	69.09	59.57	55.35	29.13
N	10	10	10	10	10	10	10	10	10	10	10	10
Group	III <mark>– 10</mark> .	0 mg/k	g Chlor	proma	zine							
Mean	13.10	10.80	12.30	8.20	13.40	9.20	10.30	18.30	10.70	17.30	10.60	11.60
S.D.	29.41	24.51	22.45	18.00	25.18	16.30	15.91	18.29	19.24	27.38	13.85	14.45
N	10	10	10	10	10	10	10	10	10	10	10	10

	Neurobehavioral Positive Control Data:	
	Motor Activity	
	Mean Motor Activity Values	
Females	Postnatal Day 17	Appendix KK

	Interval											
	1	2	3	4	5	6	7	8	9	10	11	12
Group	I – Cor	ntrol										
Mean	99.10	39.90	34.00	22.70	30.20	16.30	24.60	32.10	30.70	25.60	27.70	14.50
S.D.	37.91	43.36	30.81	43.34	36.66	25.23	29.95	42.49	36.06	39.64	39.21	22.14
N	10	10	10	10	10	10	10	10	10	10	10	10
Group	II – 2.0	mg/kg	Amph	etamin	е							
Mean	85.20	47.40	30.20	47.40	34.00	15.80	17.50	18.40	26.50	33.60	19.10	34.40
S.D.	35.75	31.80	26.19	26.08	24.68	13.77	19.73	23.20	21.84	31.32	22.29	26.34
N	10	10	10	10	10	10	10	10	10	10	10	10
Group	III – 10	.0 mg/l	g Chlo	rproma	azine							
Mean	2.20	4.80	1.00	0.90	2.70	17.70	14.20	3.70	23.60	4.80	6.10	12.60
S.D.	3.16	6.09	2.31	2.51	6.96	52.49	37.67	5.85	46.08	9.17	18.94	28.88
N	10	10	10	10	10	10	10	10	10	10	10	10

			Neu	ırobeh	aviora	l Posit	ive Co	ontrol [Data:						
					Мо	tor Ac	tivity								
			Mean Motor Activity Values												
	lales			11100		natal [•	4,400		^	nnenc	lix KK			
<u> </u>	iaies				FUSII	ialai L	Jay Z I				ppenc	IIX IXIX			
				Interval											
	1	2	3	4	5	6	7	8	9	10	11	12			
Group	I Con	trol													
Mean	73.60	50.10	25.30	17.10	16.50	28.50	25.70	14.60	27.00	16.10	7.90	8.80			
S.D.	46.33	35.63	29.06	26.53	20.99	28.32	23.84	21.48	25.73	18.54	10.16	10.77			
N	10	10	10	10	10	10	10	10	10	10	10	10			
Group	II – 2.0 1	mg/kg /	Amphe	tamine											
Mean	157.30	154.00	144.00	152.60		141.20		136.70	133.80	127.10	125.00	113.20			
S.D.	30.36	22.58	9.13	36.00	25.08	28.27	27.20	26.42	28.39	23.50	31.85	25.57			
N	10	10	10	10	10	10	10	10	10	10	10	10			
Group	III – 10.	0 mg/k	g Chlor	proma	zine										
Mean	14.20	6.90	0.70	2.60	5.10	4.50	4.20	11.50	8.60	10.50	5.20	5.20			
S.D.	18.40	12.31	1.49	8.22	7.69	7.68	7.28	17.28	10.48	14.39	10.81	7.13			
N	10	10	10	10	10	10	10	10	10	10	10	10			

			Neu	ırobeh	aviora	ıl Posit	tive Co	ontrol [Data:				
			Motor Activity										
			•										
			Mean Motor Activity Values										
Fe	males		Postnatal Day 21									Appendix KK	
							<u> </u>						
		Interval											
	1	2	3	4	5	6	7	8	9	10	11	12	
Group	Group I – Control												
Mean	93.30	29.80	27.50	17.50	17.80	27.10	15.10	14.50	8.70	7.80	08.8	10.40	
S.D.	51.26	23.93		25.10	29.56	30.45	23.90	20.60	14.43	12.4		21.70	
	••												
N	10	10	10	10	10	10	10	10	10	10	10	10	
Group	II – 2.0 i	ma/ka	Amphe	tamine									
Mean			-			116 60	108.60	104 90	113 20	111.3	30 108.00	95.00	
S.D.	27.65	29.30		27.45	32.05		36.06	30.71	20.07	22.8		22.40	
N.	10	10	10.00	10	10	10	10	10	10	10	10	10	
IN	10	10	10	10	10	10	10	10	10	10	10	10	
Group	III 40 i	0	a Chla	rnromo	- ino								
	III – 10 .0	_	_	-		E 60	E 00	10.00	4.60	E 00	. E.OO	0.00	
Mean	8.00	3.40	3.20	4.70	4.40	5.60	5.00	10.80	4.60	5.20		8.00	
S.D.	11.19	6.92	4.78	5.72	7.79	7.73	12.27	12.46	7.44	12.8		9.43	
N	10	10	10	10	10	10	10	10	10	10	10	10	

Males		Neu		Mo an Mot	tor Ac	tivity ivity V		Data:		Appendix KK		
					Inte	rval						
1	2	3	4	5	6	7	8	9	10	11	12	

		Interval											
	1	2	3	4	5	6	7	8	9	10	11	12	
Group	I – Con	trol											
Mean	233.1	211.1	182.2	156.5	157.3	120.3	82.4	80.1	65.4	51.3	44.2	18.3	
S.D.	49.84	31.37	18.05	28.60	35.20	50.12	53.69	57.66	63.58	56.90	52.93	23.21	
N	10	10	10	10	10	10	10	10	10	10	10	10	
Group	li – 2.0	mg/kg .	Amphe	tamine									
Mean	242.5	228.8	190.8	190.5	185.6	163.8	165	169.4	160.5	155.7	142.5	133.2	
S.D.	61.10	44.69	47.22	55.66	32.24	41.13	48.15	53.80	49.25	35.92	38.54	42.49	
N	10	10	10	10	10	10	10	10	10	10	10	10	
Group	III – 10.	0 mg/kg	g Chlor	proma	zine								
Mean	28.8	31.3	26.4	20.3	16.8	19.7	10.6	9.1	5.9	7.4	6.3	4.2	
S.D.	69.09	63.0	54.62	60.03	34.86	29.18	31.09	8.57	11.08	18.65	12.41	9.07	
N	10	10	10	10	10	10	10	10	10	10	10	10	

	Neurobehavioral Positive Control Data:	
	Motor Activity	
	Mean Motor Activity Values	
Females	Postnatal Day 62	Appendix KK

		Interval											
	1	2	3	4	5	6	7	8	9	10	11	12	
Group	i – Con	trol											
Mean	171.10	153.40	143.90	124.00	103.60	95.50	91.00	55.80	57.60	37.90	32.30	32.20	
S.D.	24.85	23.08	37.22	35.57	29.28	37.63	28.77	30.97	42.84	39.45	42.60	30.80	
N.	10	10	10	10	10	10	10	10	10	10	10	10	
Group	II – 2.0	mg/kg .	Amphe	tamine	,								
Mean	150.10	144.90	133.60	132.00	137.80	150.50	120.30	130.40	124.00	134.10	143.30	105.30	
S.D.	45.19	29.05	31.40	33.97	31.90	46.83	39.06	43.90	39.58	35.23	31.92	40.12	
N	10	10	10	10	10	10	10	10	10	10	10	10	
Group	III – 10.	0 mg/k	g Chlor	proma	zine								
Mean	33.30	18.20	12.40	10.20	8.70	0.90	4.10	2.30	6.90	5.50	2.50	0.00	
S.D.	43.27	30.08	33.27	13.49	23.79	2.51	8.57	2.63	9.69	8.45	5.04	0.00	
N	10	10	10	10	10	10	10	10	10	10	10	10	

PROTOCOL

BUTANE

COMBINED REPEATED-EXPOSURE TOXICITY, REPRODUCTION AND NEUROTOXICITY SCREENING IN RATS VIA WHOLE-BODY INHALATION EXPOSURES

CONFIDENTIAL

HLS Study No.:

Protocol No.:

Date:

03-4242

Final

17 September 2003

PROTOCOL PREFACE

(Confidential Information - to be distributed on a need-to-know basis)

Study Title:

Butane: Combined Repeated-Exposure Toxicity, Reproduction

9/19/03

and Neurotoxicity Screening in Rats via Whole-Body

Inhalation Exposures

HLS Study No.:

03-4242

This is the Final Protocol. It has been reviewed and approved by:

Gary M. Hoffman, B.A., DABT

Study Director

Huntingdon Life Sciences (HLS) Address: 100 Mettlers Road

East Millstone, NJ 08875-2360

Phone No.: 732-873-2550 x2920

Fax No.: 732-873-3992

Email: hoffmang@princeton.huntingdon.com

Thomas M. Gray, M.S., D.A.B.T.

Sponsor Representative

American Petroleum Institute (API)

Address:

1220 L Street, Northwest

Washington, D.C. 20005-4070

Phone No.: 202-682-8480

Fax No.:

202-682-8270

Email:

grayt@api.com

TABLE OF CONTENTS

1.	IN	FRODUCTION	1
2.	ST	UDY PERSONNEL	1
3.	PR	OPOSED STUDY DATES	2
4.	EX	PERIMENTAL DESIGN	3
4	.1.	JUSTIFICATION FOR ROUTE, DURATION AND FREQUENCY	3
	.2.	JUSTIFICATION FOR TEST SYSTEM SELECTION	
_	.3.	JUSTIFICATION FOR NUMBER OF ANIMALS	
	.4.	JUSTIFICATION FOR EXPOSURE LEVEL SELECTION	
5.	TE	ST SUBSTANCE	4
5	.1.	TEST SUBSTANCE	.4
_	.2.	IDENTIFICATION OF TEST SUBSTANCE	
_	.3.	ARCHIVAL SAMPLES	
5	.4.	UNUSED TEST SUBSTANCE	
6.	TE	ST ANIMALS	. 5
6	.1.	SPECIES	5
	.2.	SUPPLIER	
_	.3.	ANIMAL REQUIREMENTS/SPECIFICATIONS	
	.4.	ANIMAL HUSBANDRY	
	5.5.	ACCLIMATION PERIOD	
6	.6.	ANIMAL ASSIGNMENT	.8
6	.7.	ANIMAL IDENTIFICATION	.8
6	.8.	MATING PROCEDURE	.9
6	.9.	ANIMAL HUSBANDRY DURING EXPOSURE	.9
7.	TE	ST SUBSTANCE ADMINISTRATION	9
7	.1.	ROUTE OF ADMINISTRATION	.9
7	.2.	JUSTIFICATION FOR ROUTE OF ADMINISTRATION	
7	.3.	DURATION AND FREQUENCY OF ADMINISTRATION	.9
7	.4.	ADMINISTRATION OF TEST SUBSTANCE	10
7	.5.	EXPOSURE CONCENTRATION ADMINISTRATION	10
7	.6.	PARTICLE SIZE DISTRIBUTION ANALYSIS	
7	.7.	CHAMBER AND EXPOSURE ROOM ENVIRONMENT	.10
7	.8.	SUMMARY OF CHAMBER ACTIVITY	11
8.	EX	PERIMENTAL EVALUATION	11
8	.1.	OBSERVATIONS	11
8	.2.	BODY WEIGHTS	
8	.3.	FEED CONSUMPTION	
8	.4.	PARTURITION AND LACTATION	13

8.	5.	F ₁ PUP EVALUATIONS	.13
8.	6.	NEUROBEHAVIORAL EXAMINATIONS	
8.	7.	CLINICAL PATHOLOGY	.14
9.	PO	STMORTEM	16
9.	1.	METHOD OF EUTHANASIA	.16
9.	2.	POSTMORTEM EXAMINATION	.17
9.	3.	EUTHANASIA SCHEDULE	
9.	4.	MACROSCOPIC EXAMINATION - MAIN STUDY MALE RATS	.17
9.	.5.	MACROSCOPIC EXAMINATIONS - FEMALE RATS	.17
9.	.6.	ORGAN WEIGHTS	
9.	.7.	TISSUES PRESERVED	
9.	.8.	MICROSCOPIC PATHOLOGY EVALUATIONS	
9.	9.	$MACROSCOPIC\ POSTMORTEM\ EXAMINATION\ -\ F_1\ PUPS\$.19
10.	P	PRESERVATION OF RECORDS AND SPECIMENS	19
11.	S	TATISTICAL EVALUATIONS	20
1	1.1.	CONTINUOUS DATA	.20
1	1.2.		
1	1.3.	MOTOR ACTIVITY DATA	.21
12.	F	EPORTING	22
1	2.1.	STATUS REPORTS	.22
	2.2.		
13.	F	REGULATORY REFERENCES	
1	3.1.	TEST GUIDELINE	.24
	3.2.	•	
	3.3.		
1	3.4.	INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE (IACUC)	.25
14.	(QUALITY ASSURANCE MONITORING	25
15.	A	ALTERATION OF DESIGN	25
AP	PEI	NDIX A	26

1. INTRODUCTION

HLS Study No.

03-4242

Title

Butane: Combined Repeated-Exposure Toxicity, Reproduction and Neurotoxicity Screening in Rats via Whole-Body

Inhalation Exposures

Testing Facility

Huntingdon Life Sciences

100 Mettlers Road

East Millstone, NJ 08875-2360

Purpose

This study is designed to assess the potential toxicity, including neurotoxicity, and reproductive performance in male and female rats when the test substance is administered by whole-body inhalation exposure. For male and female rats, it should permit detection of effects on gonadal function which may not be detected by histological examination of the reproductive organs and on mating behavior. In addition, for female rats this study should detect effects on conception, development of the conceptus and parturition and pup survival to Lactation Day 4.

2. STUDY PERSONNEL

Study Director

Gary M. Hoffman, BA, DABT

Alternate Contact

Edward R. Frizell, MD, PhD

Toxicologist, Reproductive & Developmental Toxicology

Tel.: 732-873-2550 x2598

Director of Reproductive Toxicology

Keith P. Hazelden, BSc, CBiol, MIBiol

Tel.: 732-873-2550 x2590

Additional personnel will be documented in the project file and presented in the final report.

3. PROPOSED STUDY DATES

Study Initiation Date

Date Study Director Signs Protocol

Receipt of Test Animals

15 September 2003 (Experimental Start)

Initiation of Exposures

29 September 2003

Initiation of Mating

13 October 2003

Termination of Mating

27 October 2003

Termination of Exposures

Main Study Rats: 28 October 2003

Satellite Female Rats: 21 November 2003

Necropsy:

Main Study Rats: 28-29 October 2003

Satellite Female Rats: 8-22 November 2003

Submission of Draft Final Report:

19 March 2004

Experimental Termination:

Date of last data collection

Study Completion Date:

Date final report is signed by Study Director

4. EXPERIMENTAL DESIGN

Group	Group Designation	Exposure Levels (ppm)	Treatment Pre-matir Main Study Male Rats ^b		Number o Main Study Male Rats	f Animals Main Study and Satellite Female Rats*
1	Air Control ^a	0	2 weeks	2 weeks	12	24
2	Low	900	2 weeks	2 weeks	12	24
3	Mid	3000	2 weeks	2 weeks	12	24
4	High	9000	2 weeks	2 weeks	12	24

^{*12/}group = main study animals for subchronic evaluations only

- Main Study male rats (12/group) will be exposed once daily (6 hours/day), seven days/week for 2 weeks prior to mating initiation. Exposure of Main Study male rats will continue during the mating and post-mating periods until euthanized for a minimum exposure of 28 days. Main Study female rats (12/group) will be exposed once daily (6 hours/day), seven days/week for 4 weeks (28 days).
- Satellite female rats (12/group) for the reproduction study will be exposed once daily (6 hours/day), seven days/week for at least two weeks prior to mating initiation. Satellite female rats will continue to be treated once daily (6 hours/day) during mating. Once mated, Satellite female rats will be treated once daily (6 hours/day) during gestation (days 0-19). Satellite female rats without evidence of mating will continue to be treated for 25 days (6 hours/day) following completion of the mating period. In the event that Satellite female rats without evidence of mating appear pregnant, exposure will be terminated on the estimated Gestation Day 19.

The first day of exposures will be defined as Day 0 of the study.

4.1. JUSTIFICATION FOR ROUTE, DURATION AND FREQUENCY

The inhalation route is one of the potential routes of human exposure to this test substance and is the route specified in the referenced guidelines. The duration of the study and frequency of exposures are as recommended in the referenced guidelines.

^{*12/}group = satellite animals for reproductive evaluations only

^a Control animals will be treated with air only with the same treatment regimen as the treated groups.

4.2. JUSTIFICATION FOR TEST SYSTEM SELECTION

The rat is a rodent animal model acceptable under OECD and EPA testing guidelines for reproductive toxicity and neurotoxicity studies. In addition, a historical database is available in the Testing Facility for comparative evaluation with this strain of rat.

4.3. JUSTIFICATION FOR NUMBER OF ANIMALS

The number of animals in this study is considered the minimum necessary to allow for meaningful interpretation of the data, as required by OECD and EPA guidelines. Ten pregnancies per group are considered an adequate number for screening for developmental toxicities. The reference guideline indicates 8-10 litters per group provide the necessary degree of consistency between studies. With the group size of 12 used in this study, and with recent pregnancy rates of 80-90%, this should provide between 8-10 litters/group for evaluation. On this basis, group sizes of 12 paired Main Study male and Satellite female rats are considered appropriate for this study and will provide a sufficient number of litters in each group to meet guideline requirements. Group sizes of 12 Main Study female rats are considered appropriate for providing comparable data to the Main Study male rats.

4.4. JUSTIFICATION FOR EXPOSURE LEVEL SELECTION

The exposure levels are based on results of a 2-week range-finding Study 03-6143 which showed no toxicity at exposure levels of 90, 900 and 9000 ppm. Therefore, the high exposure level was established (for safety reasons) at 9000 ppm since it is 50% of the lower explosion limit (1.8% = 18000 ppm) for the test substance.

5. TEST SUBSTANCE

5.1. TEST SUBSTANCE

BUTANE

Test Substance Category:

industrial gas

Description, lot number, storage, expiration date (if available) and handling procedures, as well as other pertinent information will be documented in the study data. The Testing Facility will purchase the test substance from a Sponsor approved vendor (MG Industries, Malvern PA). The test substance will be stored (ambient conditions) in an outside solvent shed except when in use in the inhalation laboratory. The test substance will be handled as a flammable gas.

5.1.1.	Purity	To be determined by the Testing Facility by assaying by GC before the study.
5.1.2.	Stability	To be determined by the Testing Facility by assaying by GC before

and after the study.

5.2. IDENTIFICATION OF TEST SUBSTANCE

Unless otherwise noted, the identity, strength, purity, composition, stability, and method of synthesis, fabrication and/or derivation of each batch of the test substance will be documented by the Supplier. This documentation will be maintained by the Supplier. The Testing Facility will ensure that the location of the documentation of fabrication is provided in the report.

5.3. ARCHIVAL SAMPLES

An archival sample from each lot of test substance will be taken and stored in the Archives of the Sponsor (EPL Archives, Inc., 45610 Terminal Drive, Sterling, VA 20166). If multiple studies are conducted with the same test substance, a common archival sample may be taken and appropriately labeled.

5.4. UNUSED TEST SUBSTANCE

The unused portion of the test substance as well as any empty test substance containers will be returned to the Supplier following submission of the final report of the final study with this test substance.

6. TEST ANIMALS

6.1. SPECIES

Albino Rats (Outbred) Vaf/Plus® Sprague-Dawley - derived (CD®) Crl: CD (SD) IGS BR

6.2. SUPPLIER

Charles River Laboratories Raleigh, North Carolina

6.3. ANIMAL REQUIREMENTS/SPECIFICATIONS

6.3.1. Number

Male Rats	Female Rats	<u>Total</u>
48	96	144

6.3.2. Age and Weight

Animals will be ordered with body weight stipulations to allow all rats of the same sex to be within \pm 20% of the mean weight at the time of randomization.

Male rats will be approximately six weeks at receipt and approximately 8 weeks (200-300 grams) at initiation of treatment. Animals outside this weight range will be used at the discretion of the Study Director.

Female rats will be approximately six weeks at receipt and approximately 8 weeks (150-250 grams) at initiation of treatment. Female rats will be nulliparous and non-pregnant. Animals outside this weight range will be used at the discretion of the Study Director.

6.4. ANIMAL HUSBANDRY

6.4.1. Facilities Management/Animal Husbandry

Currently acceptable practices of good animal husbandry will be followed, e.g., Guide for the Care and Use of Laboratory Animals; National Academy Press 1996. Huntingdon Life Sciences is fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC).

6.4.2. Veterinary Care

Animals are monitored by the technical staff for any conditions requiring possible veterinary care. If any such conditions are identified, a staff veterinarian will be notified for an examination and evaluation. Animals will be treated as outlined in the Animal Welfare Act Compliance section of this protocol.

6.4.3. Housing

All animals will be housed individually in stainless steel suspended cages with wire mesh floors and fronts except for the mating period when one Main Study male and one Satellite female rat will be housed together. During cohabitation (when Satellite female rats will be brought to the Main Study male rat's cages), male and

female rats will then be housed in stainless steel cages of appropriate size for group housing animals. Each cage will be fitted to secure a glass feeder jar with a stainless steel lid. Clean feeder jars and fresh feed will be provided at least weekly. From Day 18 of gestation and during lactation, the dam will be housed with her litter in plastic "shoebox" cages with bedding. Clean feed jars and fresh feed will be provided at least weekly for periods when feed consumption is not being recorded and at each interval when feed consumption will be recorded.

6.4.4. Feed and Feed Analysis

Certified Rodent Diet, No. 5002; (Meal) supplied by PMI Nutrition International (St. Louis, MO) and provided *ad libitum*.

Analytical certification of batches of feed provided by the manufacturer will be maintained on file at the Testing Facility. There are no known contaminants in the feed which are expected to interfere with the objectives of this study.

6.4.5. Water and Water Analysis

Facility water is supplied by Elizabethtown Water Company (Westfield, NJ) and will be provided *ad libitum* to individual animal cages via an automated watering system.

Water analyses are conducted by Elizabethtown Water Company to assure that water meets standards specified under the EPA Federal Safe Drinking Water Act Regulations (40 CFR Part 141). Water analysis, provided by the supplier, will be maintained on file at the Testing Facility. In addition, chemical and microbiological analyses are conducted biannually on water samples collected from representative rooms in this facility. Results are maintained on file at the Testing Facility. There are no known contaminants which are expected to interfere with the objectives of this study.

6.4.6. Bedding and Bedding Analysis

Ground corncob bedding (Bed-O'-Cobs® 1/4 inch Irradiated, The Andersons, Maumee, Ohio) will be provided for each mated female rat on Gestation Day 18. Fresh bedding will be provided weekly or as needed throughout lactation.

Analyses for each batch of bedding used on study provided by the supplier, will be maintained on file at the Testing Facility. There

are no known contaminants in the bedding that are expected to interfere with the results of this study.

6.4.7. Environmental Conditions

Light/Dark Cycle

Twelve hour light/dark cycle provided via automatic timer.

Temperature

Temperature will be monitored in accordance with Testing Facility SOPs to ensure that the desired range of 18 to 26°C is maintained to the maximum extent possible.

Humidity

Humidity will be monitored in accordance with Testing Facility SOPs to ensure that the desired range of 30 to 70% is maintained to the maximum extent possible.

6.5. ACCLIMATION PERIOD

Approximately 2 weeks; all animals will be checked for viability twice daily. Prior to assignment to study, all animals will be examined to ascertain suitability for study.

6.6. ANIMAL ASSIGNMENT

More animals than required for the study will be purchased and acclimated. Animals considered suitable for study on the basis of pretest physical examinations, body weight data and any other pretest evaluations, will be randomly assigned to control or treated groups in an attempt to equalize mean group body weights. Female animals will be randomly assigned to Main Study or Satellite groups. Individual weights of animals placed on test shall be within $\pm 20\%$ of the mean weight for each sex. Disposition of all animals not utilized in the study will be maintained in the study file.

6.7. ANIMAL IDENTIFICATION

Each animal will be assigned a temporary identification number upon receipt. After selection for study, each animal will be ear-tagged with a number assigned by the Testing Facility. This number plus the study number will comprise the unique animal number for each animal. If the tag is lost, it will be replaced or the animal will be tattooed for identification. Each cage will be provided with a cage card which will be color coded for exposure level identification and will contain the study number and animal number.

6.8. MATING PROCEDURE

Within each treatment group, the Main Study male and Satellite female rats will be co-housed (1:1) until evidence of mating is seen or for 2 consecutive weeks. Satellite female rats will be observed at approximately the same time each morning for the presence of a vaginal plug or sperm in the vaginal smear. The day on which evidence of mating is observed will be defined as day 0 of gestation. Once mated, the Satellite female rat will be removed from the mating unit and housed individually for the remainder of the study. After the mating period is over, Satellite female rats without evidence of copulation will be removed from the mating unit and housed individually for the remainder of the study (26 days) and monitored for visible signs of pregnancy with corresponding body weight gain.

6.9. ANIMAL HUSBANDRY DURING EXPOSURE

Housing - individually in suspended stainless steel cages Feed - none Water - none

7. TEST SUBSTANCE ADMINISTRATION

7.1. ROUTE OF ADMINISTRATION

Inhalation via whole-body exposure.

7.2. JUSTIFICATION FOR ROUTE OF ADMINISTRATION

The inhalation route is one of the potential routes of human exposure to this test substance.

7.3. DURATION AND FREQUENCY OF ADMINISTRATION

Main Study male rats will be exposed once daily, seven days/week for 2 weeks prior to mating initiation. Exposure of Main Study male rats (12/group) will continue during the mating and post-mating periods until euthanized for a minimum exposure of 28 days. Main Study female rats (12/group) will be exposed once daily, seven days/week for 4 weeks (28 days). Satellite female rats (12/group) for the reproduction study will be exposed once daily, seven days/week for at least two weeks prior to mating initiation. Satellite female rats will continue to be treated once daily during mating. Once mated, Satellite female rats will be treated once daily during gestation (days 0-19). Satellite female rats without evidence of mating will continue to be treated for 19 days following completion of the mating period and then held for an additional 7 days. In the event that

Satellite female rats without evidence of mating appear pregnant, exposure will be terminated on the estimated Gestation Day 19.

7.4. ADMINISTRATION OF TEST SUBSTANCE

The test substance will be administered as a gas in the breathing air of the animals. The test atmosphere will be generated by an appropriate procedure determined during pre-study trials. The trials will be performed (at least two 6-hour periods) to evaluate the optimal set of conditions and equipment to generate a stable and uniform atmosphere at the target exposure level(s). The method will be described in the raw data of the study and in the report.

The whole-body exposure chambers will each have a volume of approximately 1000 liters. The chambers will be operated at a minimum flow rate of 200 liters per minute. The final airflow will be set to provide at least one air change in 5.0 minutes (12 air changes/hour) and a T₉₉ equilibrium time of at most 23 minutes. This chamber size and air flowrate is considered adequate to maintain the animal loading factor below 5% and the oxygen level at 19% or higher. At the end of the 6-hour exposure, all animals will remain in the chambers for a minimum of 30 minutes. During this time, the chambers will be operated at approximately the same flow rate using clean air only.

7.5. EXPOSURE CONCENTRATION ADMINISTRATION

A nominal exposure concentration will be calculated daily, if possible. The flow of test substance into the chamber and the flow of air through the chamber will be monitored using appropriate calibrated equipment. The average test substance flow during each exposure will be divided by the average chamber airflow to give the nominal concentration. Also, the additive nominal concentration for all 3 test substance chambers for each exposure day will be measured by weighing the test substance cylinder before and after the exposure and dividing the difference by the average chamber airflow.

During each exposure, measurements of airborne concentrations of test substance in the animal's breathing zone will be performed at least four times using an appropriate sampling procedure and infrared spectrophotometric analytical procedure. If more than the normal amount of trials is required because of test substance generation or monitoring problems (50 technician hours), the Sponsor will be consulted prior to additional trials (additional cost).

7.6. PARTICLE SIZE DISTRIBUTION ANALYSIS

During each week of exposure, particle size determinations will be performed using a TSI Aerodynamic Particle Sizer to characterize the aerodynamic particle size distribution of any aerosol present.

7.7. CHAMBER AND EXPOSURE ROOM ENVIRONMENT

Chamber temperature, humidity, airflow rate and static pressure will be monitored continuously and recorded every 30 minutes during exposure. Chamber temperature and relative humidity will be maintained, to the maximum extent possible, between 20 to 24°C and 40 to 60%, respectively. Chamber oxygen levels (maintained at least 19%) will be measured pretest and at the beginning, middle and end of the study.

Air samples will be taken in the vapor generation area pretest and at the beginning, middle and end of the study. Light (maintained approximately 30-40 foot-candles at 1.0 meter above the floor) and noise levels (maintained below 85 decibels) in the exposure room will be measured pretest and at the beginning, middle and end of the study.

7.8. SUMMARY OF CHAMBER ACTIVITY

The minimum frequency of chamber activity is summarized below:

<u>Activity</u>	Frequency/chamber
Measured Test Substance Concentration	4X/day
Particle Size	1X/week
Temperature	13X/day
Relative Humidity	13X/day
Airflow Rate	13X/day
Nominal Test Substance Concentration	1X/day
(excluding the air control chamber)	
Rotation Pattern of Exposure Cages	1X/day
Loading/Unloading Verification	1X/day

8. EXPERIMENTAL EVALUATION

8.1. OBSERVATIONS

8.1.1. Viability Checks (Cageside)

Observations for mortality and general condition will be made at least twice daily (once in the morning and once in the afternoon). Animals in poor health or in a possible moribund condition will be identified for further monitoring and possible euthanasia.

8.1.2. Detailed Physical Observations

All animals will be observed as a group at least once during each exposure. This will routinely be performed near the middle of each exposure and may be performed more frequently if significant signs of toxicity are noted.

Each animal will be removed from its cage and a detailed physical observation performed prior to randomization. Main Study male rats will have a detailed physical observation performed once weekly beginning during the premating period and continuing through euthanasia. Main Study female rats will have a detailed physical observation performed once weekly beginning after randomization and continuing through euthanasia. Satellite female rats will have a detailed physical observation performed weekly during the premating period and on Gestation Days 0, 7, 14, 20 and Lactation Days 0, 1 and 4. Satellite female rats without evidence of mating will continue to be observed weekly during the mating and post-mating period until euthanized.

Examinations during non-exposure periods will include observations of general condition, skin and fur, eyes, nose, oral cavity, abdomen and external genitalia, occurrence of secretions and excretions, and autonomic activity (e.g., lacrimation, piloerection, pupil size, unusual respiratory pattern). Changes in gait, posture and response to handling as well as the presence of clonic or tonic movements, stereotypy (e.g., excessive grooming, repetitive circling) or bizarre behavior (e.g., self-mutilation, walking backward) will be recorded.

8.2. BODY WEIGHTS

Body weights of the Main Study male rats and the Main Study female rats will be recorded at the time of randomization into test groups, on the day treatment is initiated and weekly thereafter throughout the study until euthanized. Satellite female rats for the reproduction study will be weighed at the time of randomization into test groups, on the day treatment is initiated and twice weekly until evidence of copulation is observed. Mated Satellite female rats will be weighed on Gestation Days 0, 7, 14 and 20 and Satellite female rats that deliver litters will be weighed on Lactation Days 1 and 4. Satellite female rats without evidence of mating will continue to be weighed weekly during the mating and postmating period until euthanized. A terminal body weight will also be recorded for each animal.

8.3. FEED CONSUMPTION

Feed consumption for the Main Study male rats will be recorded weekly during the pre-mating treatment period and post-mating period until euthanized. Feed consumption for the Main Study female rats will be recorded weekly during the treatment period until euthanized. Feed consumption for Satellite female rats will be recorded weekly during the premating period. Feed consumption will not be recorded during the mating period when Main Study male rats are being co-housed with Satellite female rats. For pregnant or confirmed mated Satellite female rats, feed consumption will be recorded on Gestation Days 0-7, 7-14, and 14-20 and on Lactation Days 1-4.

8.4. PARTURITION AND LACTATION

On Day 18 of Gestation, several days prior to expected parturition, Satellite female rats will be transferred to solid, plastic cages with bedding article provided. Thereafter, examination for signs of parturition will be made twice daily (morning and afternoon). The duration of gestation will be documented. Evidence of difficult or prolonged parturition or bizarre behavior (including but not limited to self-mutilation, walking backwards), if observed, will be recorded. The day on which parturition initiates will be defined as Lactation Day 0. Litters will be observed as soon as possible after parturition completion for the number of live and dead pups, pup abnormalities and each pup will be sexed. Thereafter, litters will be observed twice daily (morning and afternoon). All pups in the litter will be uniquely identified by toe tattoo after parturition completion. The presence of dead pups will be recorded, and these will be removed from the litter as found. Unusual observations and the presence or absence of milk in the stomach will be noted.

8.5. F_1 PUP EVALUATIONS

8.5.1. Pup Physical Examinations

Each pup will be given a gross physical examination on Lactation Days 0 and 4. Pups will also be observed for any abnormal behavior.

8.5.2. Body Weights and Sexing Data

Individual pup body weights data will be recorded on Lactation Days 1 and 4. Pups will be sexed on Lactation Day 0 and sex verified on Lactation Day 4.

8.6. NEUROBEHAVIORAL EXAMINATIONS

Observations, as outlined below, on all Main Study male rats and all Main Study female rats from all exposure groups will be recorded. Observations will be assessed during the last week of exposure to the test substance. The functional observational battery and motor activity assessments will be performed for all animals on a non-exposure day. Testing will be staggered over several sessions. Each session will consist of approximately equal numbers of animals per sex per exposure level. Noise level will be maintained within a level of 55 to 65 decibels by a white noise generator. Temperature, humidity, and illumination will be measured and recorded to ensure that variations in environmental conditions are minimal during all evaluations. The functional observational battery will be performed for all animals before evaluation of motor activity.

FUNCTIONAL OBSERVATIONAL BATTERY

The time of testing will be balanced across treatment groups. All observations during the treatment period will be performed blind, i.e., the observer will be unaware of the animals' treatment.

Sensory Observations
startle response to auditory stimuli
tail pinch response
Neuromuscular Observations
grip strength – hindlimb and forelimb
Physiological Observations
rectal temperature

MOTOR ACTIVITY

Activity will be monitored using an automated Photobeam Activity System (San Diego Instruments, Inc.) Sessions will be 60 minutes in length; each session will be divided into 12 five-minute intervals. The time of testing will be balanced across treatment groups. Positive historical control data demonstrating the sensitivity of the procedure will be documented in the final report.

8.7. CLINICAL PATHOLOGY

Clinical pathology procedures and parameters are based on those recommended in guidelines published by the Joint Scientific Committee for International Harmonization of Clinical Pathology Testing in "Harmonization of Animal Clinical Pathology Testing in Toxicity and Safety Studies", *Fund. Appl. Tox.*: 29, 198-201 (1996).

Blood samples for hematology, coagulation and clinical chemistry studies will be obtained from lightly anesthetized (CO₂/O₂) Main Study animals via puncture of the orbital sinus (retrobulbar). Animals will be fasted overnight prior to clinical chemistry blood collection. Blood will be collected and studies performed as follows:

8.7.1. HEMATOLOGY

Blood for hematology studies (~ 0.25 mL) will be collected into tubes containing EDTA anticoagulant.

Number of Animals/Intervals 12/sex/group at termination

Parameters Evaluated

erythrocyte count
hematocrit
hemoglobin
mean corpuscular volume
mean corpuscular hemoglobin
mean corpuscular hemoglobin concentration
leukocyte count (total and differential)
platelet count
reticulocyte count
erythrocyte morphology (from peripheral blood smear)
platelet morphology (from peripheral blood smear)

To be evaluated only if deemed necessary by the Study Director, based on results of other hematology and/or pathology results (additional cost):

bone marrow differential count

8.7.2. COAGULATION

Blood for coagulation studies (~ 1.0 mL) will be collected into tubes containing sodium citrate anticoagulant.

Number of Animals/Intervals 12/sex/group at termination

Parameters Evaluated

prothrombin time activated partial thromboplastin time

8.7.3. CLINICAL CHEMISTRY

Blood for clinical chemistry studies (~ 1.0 mL) will be collected into tubes with no anticoagulant, allowed to clot, and centrifuged to obtain serum. If an adequate volume of serum is not available for all assays, they will be performed in the order listed.

Number of Animals/Intervals 12/sex/group at termination

Parameters Evaluated

alanine aminotransferase aspartate aminotransferase alkaline phosphatase gamma glutamyl transpeptidase urea nitrogen creatinine glucose total cholesterol triglycerides total protein albumin globulin (calculated as total protein - albumin = globulin) albumin/globulin ratio (calculated) bilirubin (total) sodium potassium chloride calcium phosphorus

8.7.4. RETENTION/STORAGE OF SPECIMENS

Any remaining (frozen) serum, which may have limited storage stability, will be stored for up to 6 months after completion of assays and will then be discarded. Peripheral blood smears will be retained and archived with the study.

9. POSTMORTEM

9.1. METHOD OF EUTHANASIA

All animals (except Lactation day 4 pups) will be euthanized using an

overexposure of inhaled carbon dioxide. Lactation day 4 pups will be euthanized using an intraperitoneal injection of sodium pentobarbital.

9.2. POSTMORTEM EXAMINATION - ANIMALS DYING DURING THE STUDY

Animals that die during the study will be given a macroscopic postmortem examination and gross lesions will be saved and preserved in 10% neutral buffered formalin. Reproductive tissues as indicated below will also be saved but no organ weights recorded. Satellite female rats dying during the study will have the number of implantation sites and corpora lutea recorded.

9.3. EUTHANASIA SCHEDULE

9.3.1. Main Study Male and Female Rats

Main Study male rats and female rats will be euthanized after at least 28 days of exposure.

9.3.2. Satellite Female Rats in the Reproduction Study

Mated Satellite female rats will be euthanized on post-partum day 4. Satellite female rats in which evidence of mating was detected but failed to deliver will be sacrificed 26 days after evidence of mating. Satellite female rats where no evidence of mating was detected and who failed to deliver will be euthanized 26 days after the completion of the mating period. Satellite female rats with total litter loss will be euthanized on post-partum day 4.

9.4. MACROSCOPIC EXAMINATION – MAIN STUDY MALE RATS

Macroscopic postmortem examinations will be performed on all Main Study male rats, including those dying spontaneously or euthanized in a moribund condition. Postmortem examinations will include examination of external surface, all orifices, cranial cavity, nasal cavity (external examination), neck and its associated tissues and organs, thoracic, abdominal and pelvic cavities and their associated tissues and organs, and external surfaces of the brain. Gross lesions or tissues with significant findings will be preserved in 10% neutral buffered formalin. If lesions are saved, corresponding tissues from several control animals may be saved for comparative purposes.

9.5. MACROSCOPIC EXAMINATIONS – FEMALE RATS

Macroscopic postmortem examinations will be performed on all Main

Study and Satellite female rats, including those dying spontaneously or euthanized in a moribund condition and on Satellite female rats sacrificed after aborting or premature delivery of a litter. Postmortem examinations will include examination of external surface, all orifices, cranial cavity, nasal cavity (external examination), neck and its associated tissues and organs, thoracic, abdominal and pelvic cavities and their associated tissues and organs, and external surfaces of the brain. The number of implantation sites and corpora lutea will be recorded for each Satellite female rat. Gross lesions or tissues with significant findings will be saved in 10% neutral buffered formalin. If lesions are saved, corresponding tissues from several control animals may be saved for comparative purposes.

9.6. ORGAN WEIGHTS

Organs indicated below will be taken at the scheduled necropsy, weighed wet, recorded and organ/body and organ/brain weight ratios calculated. Organs will not be weighed for animals found dead or euthanized in a moribund condition and for those Satellite female rats not delivering pups. Prior to weighing, all organs will be carefully dissected and properly trimmed to remove fat and other contiguous tissue in a uniform manner. Organs will be weighed as soon as possible after dissection to avoid drying. Paired reproductive organs will be weighed separately. All other paired organs will be weighed together.

Main Study	Main Study and	All Rats	
Male Rats	Satellite Female Rats		
Testes	Ovaries with Oviducts	Adrenal	Glands
Epididymides	Uterus with Vagina	Brain with	Brainstem
		Heart	Lungs
		Kidneys	Spleen
		Liver	Thymus

9.7. TISSUES PRESERVED

Tissues listed in Appendix A will be obtained at necropsy for all Main Study male and all Main Study and Satellite female rats from each exposure group and preserved in 10% neutral buffered formalin with the exception of testes and epididymides which will be preserved in a modified Davidson's fixative for at least 24 hours and then stored in 10% neutral buffered formalin. Lungs and urinary bladder will be infused with 10% neutral buffered formalin for optimal preservation.

9.8. MICROSCOPIC PATHOLOGY EVALUATIONS

Microscopic examinations for control and high exposure group Main Study male and Main Study female animals will be performed on tissues and organs as designated in Appendix A. During the microscopic examination of the testes, special emphasis will be placed on the stages of spermatogenesis and the histopathology of interstitial testicular cell structure. Note: Any abnormalities not noted during macroscopic postmortem examinations which are seen during histological processing will be recorded. If treatment-related changes are observed in the high exposure group, microscopic examinations will be performed on the animals of the low and mid exposure groups upon Sponsor approval (additional cost).

Stains: Standard stains (hematoxylin and eosin) will be used. Special stains may be employed on selected tissues to aid in making a diagnosis at the discretion of the Study Pathologist. Special stains may also be employed at the request of the Sponsor (additional cost).

9.9. MACROSCOPIC POSTMORTEM EXAMINATION - F₁ PUPS

Macroscopic postmortem examinations (internal and external) will be performed on all F1 pups found dead during lactation. Unusual observations, including gross abnormalities and the presence or absence of milk in the stomach, will be noted and then the carcasses will be discarded. F1 pups found dead at birth will be identified (lung floatation test) as stillborn or alive but found dead. Macroscopic postmortem examinations (external only) will be performed on all F1 pups on Lactation Day 4 for pups surviving to that interval. Unusual observations, including gross abnormalities, will be noted and then the carcasses will be discarded.

10. PRESERVATION OF RECORDS AND SPECIMENS

All data documenting experimental details and study procedures and observations will be recorded and maintained as raw data. At the completion of the study, all reports, raw data, preserved archival specimens and retained samples will be maintained in the Testing Facility's Archives for a period of 10 years after submission of the signed final report. Biological samples collected for clinical pathology will be discarded as described elsewhere in this protocol.

The Sponsor will be contacted in order to determine the final disposition of these materials. The Sponsor is responsible for all cost associated with the storage of these materials beyond 10 years from the issuance of the final report and for any costs associated with the shipment of these materials to the Sponsor or to any other facility designated by the Sponsor.

11. STATISTICAL EVALUATIONS

11.1. **CONTINUOUS DATA** - to include but not be limited to:

- Body weights
- Body weight changes
- Feed consumption values
- Rectal temperature
- Hematology and Coagulation values
- Clinical Chemistry values
- Gestation length
- Corpora lutea
- F₁ pup weights (each weighing interval during lactation)
- Number of pups (F₁ litters) per pregnant female rats
- Number of male and female pups
- Pup weight distinguished by sex and as a composite for both sexes (litter as experimental unit)
- Organ weights and organ weight to body weight and brain weight ratios
- Grip strength measurements

Evaluation of equality of group means will be made by the appropriate statistical method. For all parameters except for organ weights, the standard one-way analysis of variance (ANOVA) using the F ratio to assess significance will be used (Dunlap and Duffy, 1975). If significant differences among the means are indicated, additional testing will be performed using Dunnet's t-test to determine which means are significantly different from the control (Dunlap et al., 1981). weight data will be analyzed only by parametric methods. Bartlett's test (Bartlett, 1937; Sokal and Rohlf, 1995) will be performed to determine if groups have equal variances. The standard one-way analysis of variance (ANOVA) using the F ratio to assess significance will be used (Dunlap and Duffy, 1975). If significant differences among the means are indicated, additional tests will be used to determine which means are significantly different from the control: Dunnett's t-test (Dunlap et al., 1981; Dunnett, 1955, 1964) for homogeneous data, or Cochran and Cox's modified t-test (Cochran and Cox, 1959) for non-homogeneous data.

All t-tests will be conducted at the 5% and 1% significance levels.

References for these procedures are:

Bartlett, M.S. 1937. Properties of sufficiency and statistical tests. *Proceedings of the Royal Society, Series A*, 160: 268-282; Cochran, W.G. and Cox, G.M. 1959. *Experimental Designs*, New York: John Wiley, pp. 100-102; Dunlap, W.P. and Duffy, J.A. 1975. Fortran IV Functions for

Calculating Exact Probabilities Associated with Z, Chi-Square, T and F Values. *Behav. Res. Methods and Instrumentations* 7:59-60; Dunlap, W.P., Marx, M.S. and Agamy, G.G. 1981. Fortran IV functions for calculating probabilities associated with Dunnett's test. *Behav. Res. Methods and Instrumentation* 13: 363-366; Dunnett, C.W. 1955. A multiple comparison procedure for comparing several treatments with a control. *Journal of the American Statistical Association* 50: 1096-1121; Dunnett, C.W. 1964. New tables for multiple comparisons with a control. *Biometrics* 20-3: 482-491; Sokal, R.R. and Rohlf, F.J. 1995. Biometry. 3rd Edition. San Francisco: W.H. Freeman pp. 369-371; Steel, R.G.D. 1959. A multiple comparison rank sum test: treatment versus control. *Biometrics* 15: 560-572.

11.2. INCIDENCE DATA - to include but not be limited to:

- Mortality rate
- Mating indices, pregnancy rates, male rat fertility indices
- Litter survival indices
- Gestation indices
- Incidence of dams with no viable pups
- Mean pup survival indices (Days 0 and 4)

A Fisher Exact Test with Bonferonni correction will be performed to identify differences between the control and treatment groups. All statistical tests will be conducted at the 5% and 1%, two-sided risk levels.

11.3. MOTOR ACTIVITY DATA

The data will be analyzed using split-plot repeated measures ANOVA with model terms for group, animal within group, interval and group by interval interaction. If the group x interval interaction is statistically significant (p=0.05), indicating non-parallelism in the behavioral profile between groups, a separate one-way ANOVA for group effects will be performed at each interval. If the response data passes on the parallel hypothesis, an ANOVA (using summed responses over intervals) will be used to test for the overall treatment effect which constitutes the level hypothesis. If any significant overall treatment group effect is found by any of the above ANOVAs, Dunnett's t-test will be used to find groups that differed from control. Analyses will be performed for sexes separately and combined. Treatment group effects will be deemed significant at the p=0.05 level. Plots, tables, listings, and analyses will be generated using SAS® version 6.12 for WINDOWS. Analyses will be conducted by CATO Research, 200 Westpark Corporate Center, 4364 South Alston Avenue, Durham, NC The Testing Facility will be responsible for the GLP 27713-2280. compliance of this subcontractor.

12. REPORTING

12.1. STATUS REPORTS

Periodic verbal and written updates on study progress will be provided by the Study Director. In general, written status reports will be submitted weekly and at termination of the study.

12.2. FINAL REPORT

One unbound hard copy and one electronic copy of an audited draft report will be submitted following termination of the study. After receipt and review of the Sponsor's comments, appropriate changes will be made and two hard copies and one electronic copy of a signed, final report will be issued. (Additional copies will be provided at additional cost). The report will minimally include:

12.2.1. Body of Report

- Compliance Statement (including Sponsor signature line)
- Ouality Assurance Statement
- Abstract
- Introduction
- Experimental Design
- Materials and Methods
- Results and Discussion
- Conclusion concerning a No-Observed-Adverse Effect Level (NOAEL)
- Statistical Procedures
- Protocol deviations and study impact statements

12.2.2. Summary Tables

- Exposures
- Mortality
- Mating indices, pregnancy rates and male rat fertility indices
- Physical in-life observations
- Mean body weight data
- Mean animal weight gain data
- Mean feed consumption data
- Mean Hematology and Coagulation
- Mean Clinical Chemistry
- Mean Functional Observation Battery
- Mean gestation length
- Mean number of corpora lutea

- Mean female rat litter data to include the number of pups (live, dead and total) at birth and number of live pups on Lactation Days 0 and 4
- Litter survival indices
- Mean litter pup survival indices (Lactation Days 0 and 4)
- Mean pup weights (Lactation Days 0 and 4)
- Mean pup sex ratio (Days 0 and 4)
- Macroscopic postmortem examination (Male Rats, Female Rats, F₁ pups)
- Mean organ weights and organ weight to body weight and brain weight ratios
- Microscopic Pathology

12.2.3. Miscellaneous

- Mating performance data
- Recent historical control data for the Testing Facility
- Quality Assurance Statement

12.2.4. Appendix Tables (Individual data)

- Mortality
- Mating indices, pregnancy rates and male rat fertility indices
- Physical in-life observations
- Mean and individual body weight data
- Mean and individual animal weight gain data
- Individual feed consumption data
- Individual Hematology and Coagulation
- Individual Clinical Chemistry
- Individual Functional Observation Battery
- Individual gestation length
- Individual number of corpora lutea
- Individual female rat litter data to include the number of pups (live, dead and total) at birth and number of live pups on Lactation Days 0 and 4
- Individual litter survival indices
- Individual litter pup survival indices (Days 0 and 4)
- Individual pup weights (Days 0 and 4)
- Individual macroscopic postmortem examination (Male Rats, Female Rats, F₁ pups)
- Individual organ weights and organ weight to body weight and brain weight ratios
- Individual Microscopic Pathology

12.2.5. Appendices

- Motor activity evaluation by CATO
- Personnel involved in the study
- Protocol and Amendments

A Robust Summary in IUCLID electronic format will also be separately provided by the Testing Facility's UK office.

13. REGULATORY REFERENCES

13.1. TEST GUIDELINE

This study complies with the Organization for Economic Cooperation and Development (March 22, 1996). OECD Guidelines for Testing of Chemicals; OECD Guideline 422: Combined Repeated Exposure Toxicity Study with the Reproduction/Development Toxicity Screening Test, pp. 1-14 and US EPA OPPTS Health Effects Test Guidelines 870.3650, Combined Repeated Exposure Toxicity Study with the Reproduction/Development Toxicity Screening Test, July 2000.

13.2. GOOD LABORATORY PRACTICES

This study will be conducted in compliance with Organization for Economic Cooperation and Development (OECD) Good Laboratory Practices as set forth in ENV/MC/CHEM(98)17 and EPA Good Laboratory Practices as set forth in 40 CFR Part 792 (TSCA).

13.3. ANIMAL WELFARE ACT COMPLIANCE

This study will comply with all appropriate parts of the Animal Welfare Act regulations: 9 CFR Parts 1 and 2 Final Rules, Federal Register, Volume 54, No. 168, August 31, 1989, pp. 36112-36163 effective October 30, 1989 and 9 CFR Part 3 Animal Welfare Standards; Final Rule, Federal Register, Volume 56, No. 32, February 15, 1991, pp. 6426-6505 effective March 18, 1991. The Sponsor should make particular note of the following:

- 1. The Sponsor's signature on this protocol documents for the study described, that there are no generally accepted non-animal alternatives and the study does not unnecessarily duplicate previous experiments.
- 2. All procedures used in this study have been designed to avoid discomfort, distress and pain to the animals. All methods are described in this study protocol or in written laboratory standard operating procedures.
- 3. Any procedures outlined in this study protocol which are expected to

cause more than momentary or slight pain or distress to the animals will be performed with appropriate sedatives, analgesics or anesthetics unless the withholding of these agents is justified for scientific reasons, in writing, by the Sponsor and the Study Director and approved by the IACUC; in which case the procedure will continue for the minimum time necessary. Documentation of the justification for withholding treatment for pain or distress and IACUC approval of the procedures will be made prior to study initiation on the IACUC Protocol Review form.

- 4. Animals experiencing more than momentary or slight pain or distress due to test substance or emergency situations such as injury or illness will be treated by the Testing Facility's veterinarian staff with approved analgesics or agents to relieve pain. If possible, the Study Director will be consulted prior to treatment; however, the veterinary staff is authorized to administer emergency treatment as necessary. Any subsequent treatment or euthanasia will be administered after consultation with the Study Director. The Sponsor will be advised by the Study Director of all emergency situations in as timely a manner as possible.
- 5. Methods of euthanasia used during this study are in conformance with the above referenced regulations.

13.4. INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE (IACUC)

The IACUC Protocol Review Subcommittee has reviewed this protocol and found it to be in compliance with appropriate animal welfare regulations.

14. QUALITY ASSURANCE MONITORING

The Quality Assurance Unit of Huntingdon Life Sciences (East Millstone, NJ) will monitor the facilities, equipment, personnel, methods, practices, records, raw data, draft and final reports and controls used in this study to assure that they are in conformance with this protocol, company Standard Operating Procedures and the referenced Good Laboratory Practice regulations.

15. ALTERATION OF DESIGN

Alterations of this protocol may be made as the study progresses. No changes in the protocol will be made without the consent of the Sponsor. In the event that the Sponsor authorizes a protocol change verbally, such changes will be honored by the Testing Facility and will be followed by a written verification. All protocol modifications will be signed by the Study Director and a Sponsor representative. Any modifications potentially affecting animal welfare will also be signed by two members of the Institutional Animal Care and Use Committee prior to the modification's implementation.

APPENDIX A TISSUES PRESERVED/EXAMINED

Tissue	Tissues	Microscopic ^a
	Preserved	Examination
Adrenal Glands	X	X
Bone (sternum/femur) ^b	X	X
Bone Marrow (rib) ^c	X	
Brain (medulla/pons, cerebrum and cerebellum)	X	X
Epididymides	X	X
Heart	X	X
Kidneys	X	X
Large Intestine (cecum, colon, and rectum)	X	X
Larynx	X	
Liver	X	X
Lungs (with mainstem bronchi)	X	X
Lymph Node (mesenteric)	X	X
Lymph Node (mediastinal)	X	X
Mammary Gland (with adjacent skin)	X	X
Nasopharynx	X	
Ovary with oviducts	X	X
Prostate	X	X
Seminal Vesicles	X	X
Small Intestine (duodenum, ileum and jejunum)	X	X
Spinal Cord (cervical, thoracic, lumbar)	X	X
Spleen	X	X
Stomach	X	X
Testes	X	X
Thymus	X	X
Thyroid with Parathyroids	X	X
Tibial Nerve	X	X
Trachea	X	X
Urinary Bladder	X	X
Uterus with Vagina	X	X
All Macroscopic Lesions and Tissue Masses	X	X

^a Control and high exposure Main Study male and female animals. If a treatment-related change is observed in the high exposure group, microscopic examinations will be performed on the low and mid exposure groups upon Sponsor approval (additional cost).

^b Qualitative examination (no differential count).

^c Bone marrow smears will be prepared. They will only be evaluated (Sponsor approval, additional cost) if needed.

Study Title: Butane: Combined Repeated-Exposure Toxicity, Reproduction and Neurotoxicity Screening in Rats via Whole-Body Inhalation Exposures

Changes

1. Proposed Study Dates, page 2:

Revise:

Receipt of Test Animals

16 15 September 2003 (Experimental Start)

Termination of Exposures

Main Study Rats:

28 October 2003

Satellite Female Rats: 15 21 November 2003

2. Experimental Design, page 3:

Revise: ^c Satellite female rats (12/group) for the reproduction study will be exposed once daily (6 hours/day), seven days/week for at least two weeks prior to mating initiation. Satellite female rats will continue to be treated once daily (6 hours/day) during mating. Once mated, Satellite female rats will be treated once daily (6 hours/day) during gestation (days 0-19). Satellite female rats without evidence of mating will continue to be treated for 19 25 days (6 hours/day) following completion of the mating period and then held for an additional 7 days. In the event that Satellite female rats without evidence of mating appear pregnant, exposure will be terminated on the estimated Gestation Day 19.

Reasons for Changes

1. Correction of scheduled dates.

 Clarification that unsuccessfully mated Satellite female rats will be exposed until their last possible Gestation Day 19 and then held without exposure until the scheduled sacrifice.

Additional Cost Required: NO

Amendment approved by:

Gary M. Hoffman, B.A., DABT

20cto3

Date

Study Director

Thomas M. Gray M.S., DART

Sponsor Representative

Date

02 October 2003

Study Title: Butane: Combined Repeated-Exposure Toxicity, Reproduction and Neurotoxicity Screening in Rats via Whole-Body Inhalation Exposures

Changes

1. Experimental Design, page 3:

Revise: Main Study female rats (12/group) will be exposed once daily (6 hours/day), seven days/week for 4 weeks for a minimum exposure of 28 days.

2. Mating Procedure, page 9:

Add:During mating, cohabitation of male and female littermates will be prohibited. Satellite female rats will be observed at approximately the same time each morning for the presence of a vaginal plug or sperm in the vaginal smear. If not mated, the stage of estrous will instead be recorded. The day on which evidence of mating is observed will be defined as day 0 of gestation....

3. Duration and Frequency of Administration, page 9:

Revise: Main Study female rats (12/group) will be exposed once daily, seven days/week for 4 weeks for a minimum exposure of 28 days.

4. Body Weights, page 12:

Revise: Satellite female rats without evidence of mating will continue to be weighed twice weekly during the mating and post-mating period until euthanized....

5. Feed Consumption, page 13:

Revise: Feed consumption for the Main Study male rats will be recorded **pretest and** weekly during the pre-mating treatment period and post mating period until euthanized. Feed consumption for the Main Study female rats will be recorded **pretest and** weekly during the treatment period until euthanized. Feed consumption for Satellite female rats will be recorded **pretest and** weekly during the premating period **and**, **if not mated**, **during the post-mating period**....

6. Parturition and Lactation, page 13:

Revise: Unusual observations and the presence of absence of milk in the stomach will be noted.

7. Coagulation, page 15:

Revise: Blood for coagulation studies (~ 0.75 1.0 mL) will be collected into tubes containing sodium citrate anticoagulant.

8. Method of Euthanasia, page 16:

Revise: All animals (except Lactation day 4 pups) will be euthanized by exsanguination following using an overexposure of inhaled carbon dioxide....

9. Macroscopic Postmortem Examinations – F₁ Pups, page 19:

Revise: Unusual observations, including gross abnormalities and the presence or absence of milk in the stomach, will be noted and then the carcasses will be discarded....

10. Preservation of Records and Specimens, page 19:

Revise:At the completion of the study, all reports, raw data, preserved specimens and retained samples will be maintained in the Testing Facility's Archives for a period of 1 10 years after submission of the signed final report. Biological samples collected for clinical pathology will be discarded as described elsewhere in this protocol. The Sponsor will be contacted in order to determine the final disposition of these materials. The Sponsor is responsible for all cost associated with the storage of these materials beyond 1 10 years from the issuance of the final report and for any costs associated with the shipment of these materials to the Sponsor or to any other facility designated by the Sponsor.

11. Incidence Data, page 21:

Revise: A Fisher Exact Test with Bonferonni correction (Seigel, S. 1956. Nonparametric Statistics for the Behavioral Sciences. New York: McGraw-Hill.) will be performed to identify differences between the control and treatment groups....

12. Motor Activity Data, page 21:

Revise: Plots, tables, listings, and analyses will be generated using SAS® version 8.2 6.12 for WINDOWS....

13. Summary Tables, page 23:

Revise: Mean pup weights (Lactation Days 10 and 4)

14. Miscellaneous, page 23:

Delete: Quality Assurance Statement

15. Appendix Tables, page 23:

Revise: Mean and individual body weight data

Mean and individual animal weight gain data

16. Appendix Tables, page 23:

Revise: Individual pup weights (Days 1 9 and 4)

Reasons for Changes

1. Clarification that the exposure period for these animals will be at least 28 days not exactly 28 days.

- 2. Clarification that littermates will not be mated (by acquiring males and females from separate colony rooms) and that the estrous stages will be documented until such time that the animal is mated or the mating period is completed.
- 3. Clarification that the exposure period for these animals will be at least 28 days not exactly 28 days.
- 4. Correction of oversight in original protocol.
- 5. Clarification that feed consumption will also be measured pretest for all animals and will not be measured post-mating for the males since they are sacrificed immediately after the mating period but will be measured post-mating for the unmated Satellite females.
- 6. Clarification that the 'presence of milk in the stomach' is considered a normal observation for pups of this age and need not be separately recorded.
- 7. Reduction in the overall collected volume of blood because some of the females may be too small to tolerate the originally intended volume of blood.
- 8. Clarification that the adult test animals will be exsanguinated following anesthesia.
- 9. Clarification that the 'presence of milk in the stomach' is considered a normal observation for pups of this age and need not be separately recorded.
- 10. Correction of the archival storage period.
- 11. Addition of the reference for this statistical procedure.
- 12. Update of the SAS version currently adopted by CATO Research.
- 13. Correction of the weighing days to be reported for the pups.
- 14. Deletion of a duplicate entry already listed on page 22 in the Body of Report.
- 15. Correction that these appendix tables will only be individual and not summary data.
- 16. Correction of the weighing days to be reported for the pups.

Additional Cost Required: NO	
Amendment approved by:	
5.6	12 Mrs
IACUC	Date
Sprenow Jadrews	12/2003
IACUC	Date
-GAM	1211103
Gary M. Hoffman, B.A., DABT	Date
Study Director	
flores of Dray	10 November 2003
Thomas M. Gray, M.S., FABT	Date
Sponsor Representative	

Study Title: Butane: Combined Repeated-Exposure Toxicity, Reproduction and Neurotoxicity Screening in Rats via Whole-Body Inhalation Exposures

Changes

1. Proposed Study Dates, page 2:

Revise and Add:

Receipt of Test Animals Initiation of Exposures 16 September 2003 (Experimental Start)*
29 September 2003 (Experimental Start)**

*as per OECD GLP's
**as per EPA GLP's

2. Detailed Physical Observations, page 12:

Revise:Satellite female rats will have a detailed physical observation performed weekly during the premating period and on Gestation Days 0, 7, 14, 20 and Lactation Days 0 (except if parturition doesn't complete on the same day as it initiates), 1 and 4.....

3. Statistical Evaluations, page 20:

Replace existing description for Continuous Data:

Evaluation of equality of group means will be made by the appropriate statistical method, followed by a multiple comparison test if needed. Bartlett's test (Bartlett, 1937; Sokal and Rohlf, 1995) will be performed to determine if groups have equal variances. For all FOB and clinical pathology parameters, if the variances are equal, parametric procedures will be used; if not, nonparametric procedures will be used. All other data will be analyzed only by parametric methods. The parametric method will be the standard one-way analysis of variance (ANOVA) using the F ratio to assess significance (Armitage, 1971; Dunlap and Duffy, 1975). If significant differences among the means are indicated, additional tests will be used to determine which means are significantly different from the control: Dunnett's (Dunlap et al., 1981; Dunnett, 1955, 1964), Williams (Williams, 1971, 1972), or Cochran and Cox's modified t-test (Cochran and Cox, 1959). The nonparametric method will be the Kruskal-Wallis test (Kruskal and Wallis, 1952, 1953) and if differences are indicated, Shirley's test (Shirley, 1977) or Steel's test (Steel, 1959) will be used to determine which means differ from control. Bartlett's test for equality of variance will be conducted at the 1% significance level; all other statistical tests will be conducted at the 5% and 1%significance levels.

Replace existing references for Continuous Data:

Armitage, P. 1971. Statistical Methods in Medical Research. Oxford, UK: Blackwell Scientific Publications; Bartlett, M.S. 1937. Properties of sufficiency and statistical tests. Proceedings of the Royal Society, Series A, 160: 268-282; Cochran, W.G. and Cox, G.M. 1959. Experimental Designs, New York: John Wiley, pp. 100-102; Dunlap, W.P. and Duffy, J.A. 1975. Fortran IV Functions for Calculating Exact Probabilities Associated with Z, Chi-Square, T and F Values. Behav. Res. Methods and Instrumentations 7:59-60; Dunlap, W.P., Marx, M.S. and Agamy, G.G. 1981. Fortran IV functions for calculating probabilities associated with Dunnett's test. Behav. Res. Methods and Instrumentation 13: 363-366;

Page 2 of 2 Final Protocol

Protocol Amendment No. 3

Dunnett, C.W. 1955. A multiple comparison procedure for comparing several treatments with a control. Journal of the American Statistical Association 50: 1096-1121; Dunnett, C.W. 1964. New tables for multiple comparisons with a control. Biometrics 20-3: 482-491; Kruskal, W.H. and Wallis, W.A. 1952. Use of Ranks in one-criterion variance analysis. Journal of the American Statistical Association 47: 583-621; Kruskal, W.H. and Wallis, W.A. 1953. Errata for Kruskal-Wallis (1952) Journal of the American Statistical Association 48: 907-911; Shirley, E.A.C. 1977. A non-parametric equivalent of Williams' test for contrasting increasing dose levels of a treatment. Biometrics 33: 386-389; Sokal, R.R. and Rohlf, F.J. 1995. Biometry, 3rd Edition. San Francisco: W.H. Freeman pp. 369-371; Steel, R.G.D. 1959. A multiple comparison rank sum test: treatment versus control. Biometrics 15: 560-572.; Williams, D.A. 1971. A test for differences between treatment means when several dose levels are compared with a zero dose control. Biometrics 27: 103-117; Williams, D.A. 1972. The comparison of several dose levels with a zero dose control. Biometrics 28: 519-531.

Add reference for Incidence Data:

A Fisher Exact Test with Bonferonni correction (Seigel, S. 1956. Nonparametric Statistics for the Behavioral Sciences. New York: McGraw-Hill.) will be performed to identify differences between the control and treatment groups. All statistical tests will be conducted at the 5% and 1%, two-sided risk levels.

Reasons for Changes

- 1. Clarification of the Experimental Start dates as per the relevant GLPs.
- 2. Clarification of the observation intervals during lactation if a dam doesn't complete its delivery of pups until the morning after delivery is initiated.
- 3. Clarification of the appropriate statistical routines and/or their references for the data capture systems that were actually used.

Additional Cost Required: NO

Amendment approved by:

Gary M. Hoffman, B.A., DABT

Study Director

omas M. Gray, M.S., DABT

Sponsor Representative

Study Title: Butane: Combined Repeated-Exposure Toxicity with Reproduction/Developmental Toxicity and Neurotoxicity Screening in Rats via Whole-Body Inhalation Exposures

Changes

Revise Study Title from:

Combined Repeated-Exposure Toxicity, Reproduction and Neurotoxicity Screening in Rats via Whole-Body Inhalation Exposures

to

Combined Repeated-Exposure Toxicity with Reproduction/Developmental Toxicity and Neurotoxicity Screening in Rats via Whole-Body Inhalation Exposures

Reasons for Changes

Amendment approved by:

Clarification of the study title to accurately reflect the relevant OECD and EPA test guidelines as per protocol.

Note that in the final report that the study title will only be revised on the Cover Page and the Summary Page since all other pages were computer generated based on the original study title.

Gary M. Hoffman, B.A., DABT
Study Director

Date

Thomas M. Gray, M.S., DAD T Sponsor Representative Testing Facility Personnel

Appendix MM

<u> </u>	
TITLE/DEPARTMENT	NAME/DEGREE
SENIOR VICE PRESIDENT, SAFETY ASSESSMENT	Sylvie J. Gosselin, D.V.M., Ph.D., Diplomate A.C.V.P.
SENIOR DIRECTOR, SAFETY ASSESSMENT	Carol S. Auletta, M.B.A., D.A.B.T., R.A.C.
DIRECTOR, ANALYTICAL SERVICES	Barbara A. Litzenberger, B.S., M.T. (ASCP)
DIRECTOR, TOXICOLOGY OPERATIONS	lan Vanterpool, F.i.A.T.
DIRECTOR, QUALITY ASSURANCE	Nicki S. Iacono, B.S.
STUDY DIRECTOR	Gary M. Hoffman, B.A., D.A.B.T.
DIRECTOR, REPRODUCTIVE AND DEVELOPMENTAL TOXICOLOGY	Keith P. Hazelden, B.Sc., C.Biol., M.I.Biol.
PATHOLOGIST	Wanda B. High, D.V.M., Ph.D.
STUDY MONITOR	Georgia Burnett, A.A.S.
VETERINARIAN	Teresa S. Kusznir, V.M.D.
MANAGER/SUPERVISOR	
Reproductive Toxicology Inhalation Pharmacy Analytical Services Necropsy and Fetal Pathology Histology	Sally Wilcox, B.Sc. Stuart Cracknell, CBiol, MIBiol. Michael S. McCarthy Kay Saladdin, B.S. G. Elizabeth Baxter, B.S. Janet Kusisto, B.S., H.T. (ASCP)

Huntingdon Life Sciences	03-4242	Page 822
-		Final Report
2-Week F	Range-Finding Study Report	Appendix NN

STUDY NO. 03-6143

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

Final Report

Submitted to: American Petroleum Institute (API)

1220 L Street, Northwest Washington, D.C. 20005-4070

Attn: Thomas M. Gray, M.S., D.A.B.T.

Date: 15 August 2008

STATEMENT OF COMPLIANCE

This study was conducted in compliance with the United States Environmental Protection Agency's Good Laboratory Practices as set forth in 40 CFR Part 792 (TSCA) and the Organization for Economic Cooperation and Development (OECD) Good Laboratory Practices as set forth in ENV/MC/CHEM/(98)17, with the following exceptions:

- 1) The supplier was responsible for the identity and stability of the test substance and those tests were not performed in compliance with GLP regulations.
- 2) A lot number for the test substance was not available.

	15Ang 00
Gary M. Hoffman, B.A., D.A.B.T. Study Director	Date
Thomas M. Gray, M.S., D.A.B.T. Sponsor Representative	Date

SIGNATURE PAGE

SCIENTIST

The following Scientist was responsible for the overall conduct of this study. Departmental supervisory personnel are listed on the personnel page of this report (Appendix O).

Gary M. Hoffman, B.A., D.A.B.T.

Date

Study Director

SCIENTIFIC REVIEW

The following Scientist has reviewed and approved this report:

Keith P. Hazelden, B.Sc., M.I.Biol.

Director of Reproductive Toxicology

QUALITY ASSURANCE STATEMENT

Listed below are the dates that this study was inspected by the Quality Assurance Unit of Huntingdon Life Sciences, East Millstone, New Jersey, and the dates that findings were reported to the Study Director and Management. This report reflects the raw data as far as can be reasonably established.

Type of Inspection	Date(s) of Inspection	Reported to Study Director and Management
GLP Protocol Review	28 & 30 Jun 03	30 Jun 03
Exposure, Monitoring & Equipment Records	8 Jul 03	8 Jul 03
Body Weight, Feeder Weight & Physical Observations Data Collection	15 Jul 03	16 Jul 03
Necropsy & Training Records	22 Jul 03	23 Jul 03
Purity Analysis Report & Study Data	7 Oct 03	8 Oct 03
Final Report, Study Data & Protocol Amendment No. 1	3 – 10 Oct 03	10 Oct 03
Protocol Amendment No. 2	21 Jan 08	21 Jan 08

Sonya Gray Quality Assurance Senior Auditor Date

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

SUMMARY

This study was designed to provide a preliminary assessment of the toxicity of butane, an industrial gas, when administered via whole-body inhalation to rats for 2 weeks in order to determine exposure levels for a subsequent OECD 422 inhalation study.

Male and female Sprague-Dawley CD* rats (10/sex/group) were exposed for six hours per day to 0, 90, 900 or 9000 ppm butane for 14 or 15 consecutive days. At the end of the treatment period, all animals were euthanized and necropsied. The following parameters were evaluated: viability, clinical observations, body weights, feed consumption, organ weights and macroscopic observations.

Exposure levels were determined using an infrared spectrophotometer 4 times per chamber per day. Particle size distribution measurements were also made once per chamber per day using a TSI Aerodynamic Particle Sizer.

The mean (\pm standard deviation) analytical exposure concentrations of butane were determined to be 0.0 ± 0.0 , 91.26 ± 4.74 , 910.5 ± 32.9 and 9197 ± 328 ppm for the air control and the exposure groups, respectively. Particle sizing results indicated that the atmospheres were essentially gas only, as expected, since there was no substantial difference between the test substance chambers and the air control chamber.

All animals survived to termination. The test animals were unremarkable during the daily exposure periods and the non-exposure periods. There were no statistically significant or exposure-related differences in body weights or in feed consumption in the test substance exposed animals compared to the air control animals.

No gross abnormalities related to test substance exposure were evident at necropsy examination and there were no exposure-related differences in organ weights (absolute and relative to body weight or brain weight) in the test substance exposed animals compared to the air control animals.

In conclusion, two weeks of exposure of rats to butane gas at exposure levels of 90, 900 and 9000 ppm resulted in no effects of exposure. Therefore, the 9000 ppm exposure level was a no observable effect level (NOEL) and was considered an acceptable high exposure level (limited by safety considerations for a flammable gas) for a subsequent OECD 422 study.

TABLE OF CONTENTS

COVE	R PAG	E	823
STAT	EMEN"	T OF COMPLIANCE	824
SIGNA	ATURE	PAGE	825
QUAL	ITY A	SSURANCE STATEMENT	826
TABL	E OF C	CONTENTS	828
1.	INTR	ODUCTION	831
2.	MAT	ERIALS AND METHODS	
	2.1.	Study Management	831
	2.2.	Study Dates	831
	2.3.	Experimental Outline	832
	2.4.	Justifications	833
	2.5.	Test Substance	833
	2.6.	Test Animals	835
	2.7.	Animal Assignment	836
	2.8.	Animal Identification	836
	2.9.	Veterinary Care	836
	2.10.	Husbandry During Non-Exposure Periods	837
	2.11.	Husbandry During Exposure	838
	2.12.	Test Substance Administration and Chamber Operation	839
	2.13.	Exposure Chamber Sampling	841
	2.14.	Experimental Evaluations	842
	2.15.	Postmortem	843
	2.16.	Statistical Analysis	846
	2.17.	Data Storage	847
	2.18.	Regulatory References	847
	2.19.	Protocol Deviations	848
3.	RESU	JLTS AND DISCUSSION	
	3.1.	Test Substance Analysis	849
	3.2.	Chamber Monitoring	
	3.3.	Mortality	
	3.4.	Clinical Observations	
	3.5.	Body Weights	
	3.6.	Feed Consumption	
	3.7.	Organ Weights	

TABLE OF CONTENTS

	3.8. Macroscopic Pathology	851
4.	CONCLUSION	852
RE	FERENCES	853
	GURES	
1.	Diagram of 1000-Liter Whole-Body Exposure Chamber and Generation	
	Group 1	
2.	Diagram of 1000-Liter Whole-Body Exposure Chamber and Generation	
	Groups 2, 3 & 4	
3.	Mean Body Weights – Males	
4.	Mean Body Weights – Females	
5.	Mean Feed Consumption – Males	
6.	Mean Feed Consumption – Females	859
GE	ENERAL PREFACE	860
TA	ABLES	
1.	Summary of In-Chamber Observations	861
2.	Summary of Clinical Observations	862
3.	Mean Body Weights	867
4.	Mean Body Weight Change from Baseline	869
5.	Mean Feed Consumption Values	871
6.	Mean Organ Weights	873
7.	Incidence Summary Report for Gross Necropsy Observations	886
AF	PPENDICES	
A.	Chamber Monitoring Results	889
	Animal Termination History	
C.	Individual Clinical Observations	901
D.	Individual Body Weights	911
	Individual Body Weight Change from Baseline	
F.		
G.	Individual Organ Weights	
	Raw Data Listing of Gross Observations with Modifiers	
I.	Equipment List	
J.	MIRAN® Calibration	

TABLE OF CONTENTS

K	Chamber Distribution Results	975
	Chamber and Exposure Room Environmental Monitoring	
	Protocol and Protocol Amendments	
	Analytical Report	
	Testing Facility Personnel	
	Report Amendments	

1. INTRODUCTION

This study was designed to provide a preliminary assessment of the toxicity of butane when administered via whole-body inhalation to rats for 2 weeks in order to determine exposure levels for a subsequent OECD 422 inhalation study (03-4242).

2. MATERIALS AND METHODS

2.1. STUDY MANAGEMENT

2.1.1. SPONSOR

American Petroleum Institute (API) 1220 L Street, Northwest Washington, D.C. 20005-4070

2.1.2. SPONSOR REPRESENTATIVE

Thomas M. Gray, M.S., D.A.B.T.

2.1.3. TESTING FACILITY

Huntingdon Life Sciences (HLS)
P.O. Box 2360
100 Mettlers Road
East Millstone, New Jersey 08875-2360

2.1.4. STUDY DIRECTOR

Gary M. Hoffman, B.A., D.A.B.T.

2.2. STUDY DATES

2.2.1. STUDY INITIATION

1 July 2003 (Date Study Director signed the Protocol)

2.2.2. DATE OF ANIMAL RECEIPT

24 June 2003 (experimental start date, per OECD GLP's)

2.2.3. EXPOSURE INITIATION

8 July 2003 (experimental start date, per EPA GLP's)

2.2.4. EXPOSURE TERMINATION

22 July 2003

2.2.5. TERMINAL SACRIFICE

22 and 23 July 2003

2.2.6. EXPERIMENTAL TERMINATION DATE

23 July 2003 (Date of last data collection)

2.2.7. STUDY COMPLETION

15 August 2008 (Date Final Report is signed by the Study Director)

EXPERIMENTAL OUTLINE 2.3.

Group	Test Substance	Exposure Level ^a	Number o	f Animals ^b
		ppm	Males	Females
1	Air Control	0	10	10
2	Butane	90	10	10
3	Butane	900	10	10
4	Butane	9000	10	10

^{*}Exposures were 6 hours per day for 7 consecutive days per week for 2 weeks. Exposure levels are expressed as ppm of test substance. The exposures were conducted via wholebody exposure.

The first day of exposures was defined as Day 0 of the study.

^bComplete postmortem evaluations were performed on all animals at termination of the

2.4. JUSTIFICATIONS

2.4.1. ROUTE, DURATION AND FREQUENCY

The inhalation route is one of the potential routes of human exposure to this test substance. The duration of the study and frequency of exposures are considered to be the minimum necessary for determining exposure levels for a subsequent OECD 422 study.

2.4.2. TEST ANIMAL SELECTION

The rat is a rodent animal model commonly utilized in toxicity testing, as recommended in OECD and EPA guidelines, and will be the species used in the subsequent OECD 422 study. In addition, a historical database is available for comparative evaluation.

2.4.3. NUMBER OF ANIMALS

The number of animals in the study was considered to have been the minimum necessary for scientific and statistical reasons in order to evaluate the data with sufficient confidence levels.

2.4.4. EXPOSURE LEVEL SELECTION

The exposure levels were selected based on prior results (see MSDS attached to protocol in Appendix M) of minimal toxicity up to 1% (10000 ppm). Therefore, the high exposure level was established (for safety reasons) as 50% of the lower explosion limit (1.8% = 18000 ppm) for the test substance.

2.5. TEST SUBSTANCE

Butane

2.5.1. TEST SUBSTANCE CATEGORY

Industrial gas

2.5.2. CAS NUMBER

106-97-8

2.5.3. SUPPLIER

MG Industries 3 Great Valley Parkway Malvern, Pennsylvania, 19355

2.5.4. LOT NUMBER

Not available

2.5.5. **PURITY**

99.5% per supplier. The testing facility also determined the purity by gas chromatography (GC) before the study (see Appendix N).

2.5.6. DESCRIPTION

Colorless gas

2.5.7. DATE RECEIVED

6 May 2003

2.5.8. EXPIRATION DATE

Not available, stable per MSDS.

2.5.9. ANALYSIS

The identity, strength, purity, composition, stability and method of synthesis, fabrication and/or derivation of the test substance were documented by the supplier before its use in the study. The maintenance of these records (at the above address) was the responsibility of the supplier. The identity, strength, purity, composition and stability were also confirmed by the testing facility.

2.5.10. STORAGE

Ambient

2.5.11. ARCHIVAL SAMPLE

An archival sample from the lot of test substance was taken and stored in the archives of the sponsor (EPL Archives, Inc., 45610

Terminal Drive, Sterling, Virginia 20166). A common archival sample was taken for this range-finding study and the subsequent OECD 422 study.

2.5.12. DISPOSITION

The unused portion of the test substance as well as any empty test substance containers will be returned to the supplier following submission of the final report of the final study with this test substance.

2.6. TEST ANIMALS

2.6.1. SPECIES

Albino Rats (Outbred) VAF/Plus[®] Sprague-Dawley – Derived (CD[®]) Crl:CD[®] (SD) IGS BR

2.6.2. SUPPLIER

Charles River Laboratories Raleigh, North Carolina 27610

2.6.3. NUMBER OF ANIMALS

Received:

86 total (43 males, 43 females)

Placed on test:

80 total (40 males, 40 females)

Females were nulliparous and non-pregnant.

2.6.4. AGE AT RECEIPT

Approximately 6 weeks

2.6.5. AGE AT INITIATION OF EXPOSURES

Approximately 8 weeks

2.6.6. WEIGHT AT INITIATION OF EXPOSURES (GRAMS)

	Mean	Range
Male:	276	254 - 301
Female:	200	183 - 221

Individual weights of animals placed on test were within $\pm 20\%$ of the mean weight for each sex.

2.6.7. ACCLIMATION PERIOD

Animals were acclimated for 2 weeks. All animals were checked for viability twice daily. Prior to assignment to study, all animals were examined to ascertain suitability for study.

2.7. ANIMAL ASSIGNMENT

More animals than required for the study were purchased and acclimated. Animals considered unsuitable for the study on the basis of pretest physical examinations and body weight data were eliminated prior to random selection for group assignment. Animals considered suitable for study were distributed into 4 groups of 10 animals per sex by a computerized random sort program so that body weight means for each group were comparable. Disposition of all animals not utilized in the study is maintained in the study file.

2.8. ANIMAL IDENTIFICATION

Each animal was assigned a temporary identification number upon receipt. After selection for study, each animal was ear-tagged with a number assigned by the testing facility. The assigned animal number plus the study number comprised the unique animal number for each animal. If the tag was lost, it was replaced. In addition, each cage was provided with a cage card, which was color-coded for exposure level identification and contained study number and animal number information.

2.9. VETERINARY CARE

Animals were monitored by the technical staff for any conditions requiring possible veterinary care.

2.10. HUSBANDRY DURING NON-EXPOSURE PERIODS

2.10.1. FACILITIES MANAGEMENT/ANIMAL HUSBANDRY

Currently acceptable practices of good animal husbandry were followed, e.g., *Guide for the Care and Use of Laboratory Animals*; National Academy Press, 1996. Huntingdon Life Sciences, East Millstone, New Jersey is fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC).

2.10.2. HOUSING

Animals were individually housed in suspended, stainless steel wire mesh cages during the study.

2.10.3, FEED

Certified Rodent Diet, No. 5002; (Meal) (PMI Nutrition International, St. Louis, Missouri) was available without restriction. Fresh feed was presented weekly.

2.10.4. FEED ANALYSIS

Analysis of each feed lot used during this study was performed by the manufacturer. Results are maintained on file at the testing facility. There were no known contaminants in the feed that were expected to interfere with the objectives of this study.

2.10.5. WATER

Water (Elizabethtown Water Company, Westfield, New Jersey) was available without restriction via an automated watering system.

2.10.6. WATER ANALYSIS

Water analyses are conducted by Elizabethtown Water Company, Westfield, New Jersey (Raritan - Millstone Plant) to ensure that water meets standards specified under the EPA Federal Safe Drinking Water Act Regulations (40 CFR Part 141). In addition, water samples are collected biannually from representative rooms in the testing facility; chemical and microbiological water analyses

are conducted on these samples by a subcontract laboratory. Results of all water analyses are maintained on file at the testing facility. There were no known contaminants in the water that were expected to interfere with the results of this study.

2.10.7. ENVIRONMENTAL CONDITIONS

Light/Dark Cycle

A twelve-hour light/dark cycle, controlled via an automatic timer, was provided.

Temperature

Temperature was monitored in accordance with the testing facility SOPs and maintained within the specified range to the maximum extent possible.

Desired Range:

18 to 26 °C

Actual Range:

20.0 to 23.8 °C

Daily Average Range:

20.7 to 21.2 °C

Relative Humidity

Relative humidity was monitored in accordance with the testing facility SOPs and maintained within the specified range to the maximum extent possible. Excursions outside the specified range were not considered to have affected the integrity of the study.

Desired Range:

30 to 70%

Actual Range:

46.11 to 81.89%

Daily Average Range:

50.45 to 53.49%

2.11. HUSBANDRY DURING EXPOSURE

2.11.1. HOUSING

Animals were individually housed in stainless steel, wire mesh cages within 1000-Liter stainless steel and glass whole-body exposure chambers. The placement of each animal in the chamber was rotated at each exposure to ensure uniform exposure of the

animals. A description of the animal rotation is included in the raw data.

2.11.2. FEED

None was provided during exposure.

2.11.3. WATER

None was provided during exposure.

2.11.4. ENVIRONMENTAL CONDITIONS

Chamber temperature and relative humidity were recorded every half-hour during exposure, and maintained, to the maximum extent possible, within the ranges presented below. Excursions outside the specified range were not considered to have affected the integrity of the study.

Temperature

Desired Range:

20 to 24 °C

Actual Range:

22 to 24 °C

Relative Humidity

Desired Range:

40 to 60%

Actual Range:

53 to 61%

2.12. TEST SUBSTANCE ADMINISTRATION AND CHAMBER OPERATION

2.12.1. ROUTE OF ADMINISTRATION

Inhalation, as a gas, via whole-body exposure.

2.12.2. FREQUENCY AND DURATION OF ADMINISTRATION

The test substance was administered for 6 hours per day for 7 consecutive days per week for 14 or 15 days.

2.12.3. PRE-STUDY TRIALS

Trials were performed (at least two 6-hour periods) to evaluate the optimal set of conditions and equipment to generate a stable and uniform atmosphere at the targeted exposure levels. During this time, samples were taken to determine the distribution of the test substance in the exposure chamber.

2.12.4. CHAMBER OPERATION

The whole-body exposure chambers each had a volume of 1000 Liters. Each chamber was operated dynamically under slight negative pressure at a minimum calibrated flow rate of 200 Liters per minute. The final airflow was set to provide at least one air change (calculated by dividing the chamber volume by the airflow rate) in 5.0 minutes (12 air changes/hour) and a T_{99} equilibrium time (calculated by multiplying the air change by the exponential factor 4.6) of at most 23 minutes. The chamber airflow rate, total flow rate, time for air change and 99% equilibrium time (T_{99}) for each group are summarized below.

Group	Airflow Rate (Lpm)	Air Change (min)	T ₉₉ (min)
1	227	4.4	20.2
2	215	4.7	21.6
3	207	4.8	22.1
4	210	4.8	22.1

This chamber size and airflow rates were considered adequate to maintain the animal loading factor below 5% and the oxygen level at 19% or higher. At the end of the exposure, all animals remained in chamber for a minimum of 30 minutes. During this time, the chamber was operated at the same flow rate as used during the exposure using clean air only. Recordings of airflow rate and static pressure were made every half-hour during the exposure.

The chamber atmospheres were exhausted through the in-house filtering system, which consisted of a coarse filter, a HEPA filter, and an activated charcoal bed.

Refer to Figures 1 & 2 and Appendix I for equipment details.

2.12.5. EXPOSURE PROCEDURE

Group 1

Animals were exposed to room air only.

Groups 2, 3 and 4

The test substance was delivered from a single cylinder, through a regulator and two backpressure gauges, and branched, via ¼" tubing, to the three exposure chambers. For each chamber, ¼" tubing directed the test substance to a flowmeter, regulated by a metering valve, and into the inlet of a 1000-Liter stainless steel and glass whole-body exposure chamber.

Refer to Figures 1 & 2 and Appendix I for equipment details.

2.13. EXPOSURE CHAMBER SAMPLING

2.13.1. CHAMBER SAMPLING

Determination of the exposure levels were made using a MIRAN[®] Ambient Air analyzer equipped with a strip chart recorder. The test atmosphere was drawn from the normal sampling portal through the MIRAN[®] and measurements were recorded at least 4 times during each exposure. The exposure levels were determined by comparison of the measured absorbance to a calibrated response curve constructed using the same instrument settings.

Refer to Appendices I & J for equipment details.

2.13.2. PARTICLE SIZE DISTRIBUTION ANALYSIS

Particle size samples were drawn once during each exposure for the chambers and room air using a TSI Aerodynamic Particle Sizer. The samples were drawn for 20 seconds at a rate of 5.0 Lpm. The mass median aerodynamic diameter, geometric standard deviation and total mass concentration were calculated. A computer was used to program the system to the appropriate settings prior to sampling. The particle size distributions were calculated by the computer and printed out.

Refer to Appendix I for equipment details.

2.13.3. NOMINAL CONCENTRATION

The nominal exposure concentration (ppm) was calculated by dividing the average test substance flow (ccm) during the exposure by the average chamber airflow (Lpm).

Nominal (ppm) = <u>Test Substance Flow (ccm)</u> x 1000 Total Chamber Airflow (Lpm)

2.13.4. CHAMBER AND EXPOSURE ROOM ENVIRONMENT

Chamber oxygen levels (maintained at least 19%) were measured pretest and at the beginning, middle and end of the study. Air samples were taken in the vapor generation area pretest and at the beginning, middle and end of the study. Light (maintained approximately 30 – 40 foot-candles at 1.0 meter above the floor) and noise levels (maintained below 85 decibels) in the exposure room were measured pretest and at the beginning, middle and end of the study.

Refer to Appendix I for equipment details.

2.14. EXPERIMENTAL EVALUATIONS

2.14.1. VIABILITY CHECKS (CAGE-SIDE)

Animals were observed in their cages for mortality and general condition twice daily (once in the morning and once in the afternoon).

2.14.2. PHYSICAL EXAMINATIONS

All visible animals were observed as a group at least once during each exposure.

Each animal was removed from its cage and examined twice pretest (including on the first day of exposures) and once per week during the study period. Examinations included, but were not limited to, evaluation of skin and fur, eyes, nose, oral cavity, abdomen and external genitalia, occurrence of secretions and excretions, and autonomic activity (e.g., lacrimation, piloerection, pupil size, unusual respiratory pattern). Changes in gait, posture

and response to handling, as well as the presence of clonic or tonic movements, stereotypy (e.g., excessive grooming, repetitive circling) or bizarre behavior (e.g., self-mutilation, walking backward) were recorded.

2.14.3. BODY WEIGHT

Animals were removed from their cages and weighed twice pretest (including on the first day of exposures) and weekly during treatment. Terminal, fasted body weights were obtained just prior to necropsy.

2.14.4. FEED CONSUMPTION

Feed consumption was measured during the week prior to exposures and weekly during the study. Feed was available without restriction 7 days/week, except during exposures and terminal fasting. Animals were presented with full feeders of known weight. After 6 or 7 days, the feeders were reweighed and the resulting weight subtracted from the initial feeder weight to obtain the grams of feed consumed per animal over the 6 or 7-day period. Feed consumption was measured (weighed) weekly, beginning one week prior to treatment.

Calculation

Feed Consumption (g/kg/day) =

grams of feed consumed ÷ 6 or 7 days body weight (kg)^a

The average of the current and previous weight was used.

2.15. POSTMORTEM

2.15.1. NECROPSY INFORMATION

Necropsy was performed on 10 animals/sex/group after animals were treated for 14 or 15 days. Animals were fasted overnight prior to necropsy. A necropsy schedule was established in order to assure that approximately equal numbers of males and females were examined on each day of necropsy and that examination of

animals of both sexes were performed at similar times of the day throughout the necropsy period.

Method of Euthanasia

Exsanguination following carbon dioxide inhalation.

2.15.2. MACROSCOPIC EXAMINATIONS

Complete macroscopic postmortem examinations were performed on all animals. The macroscopic examination included examination of the external surface and all orifices; the external surfaces of the brain and spinal cord; the organs and tissues of the cranial, thoracic, abdominal and pelvic cavities and neck; and the remainder of the carcass for the presence of macroscopic morphologic abnormalities. Special attention was paid to the organs of the reproductive system.

2.15.3. ORGAN WEIGHTS

Organs indicated in Table I (below) were weighed for all animals at the scheduled necropsies. Prior to weighing, the organs were carefully dissected and properly trimmed to remove adipose and other contiguous tissues in a uniform manner. Organs were weighed as soon as possible after dissection in order to avoid drying. Paired organs were weighed together.

2.15.4. TISSUES PRESERVED

The tissues listed in Table I (below) were obtained at the scheduled sacrifice interval and preserved for all animals. No microscopic examination was performed.

TABLE I

TINDEE I		
ORGAN NAME	WEIGHED	PRESERVED
adrenal glands	X	X
aorta (thoracic)		X
bone (sternum, femur)		X
bone marrow (rib)		х

ORGAN NAME	WEIGHED	PRESERVED
brain (medulla, pons, cerebrum and	-	
cerebellum)	X	X
epididymides	X	X
esophagus		X
eyes with optic nerve		X
heart	X	Х
kidneys	X	X
lacrimal glands		X
large intestine (cecum, colon, rectum)		X
larynx		X
liver	X	X
lungs (with mainstem bronchi)	X	X
lymph nodes (mesenteric, mediastinal)		X
mammary gland		X
muscle (Biceps femoris)		X
nasopharyngeal tissue		X
nerve (sciatic)		X
ovaries	X	Х
pancreas		X
pituitary gland	X	X
prostate gland		х
salivary glands with submandibular lymph node		X
seminal vesicles	X	X
skin		X
small intestine (duodenum, ileum, jejunum)		x
spinal cord (cervical, thoracic, lumbar)		X
spleen	Х	X
stomach		X
	X	X
testes	Λ	1 ^

ODGANNAME	WEIGHED	DDECEDVED
ORGAN NAME	WEIGHED	PRESERVED
thyroid/parathyroid glands		X
trachea		X
urinary bladder		X
uterus (body/horns) with cervix	X	X
Zymbal's gland		X
tissues with macroscopic findings		X

Preservatives

All tissues - 10% neutral buffered formalin.

Eyes were placed in glutaraldehyde/paraformaldehyde initially and then retained in 10% formalin. Testes and epididymides were placed in Modified Davidson's solution initially and then retained in 10% formalin. Lungs and urinary bladder were infused with formalin prior to their immersion into a larger volume of the same fixative.

Smear preparations of the marrow from the rib were air dried and fixed in absolute methanol.

2.16. STATISTICAL ANALYSIS

The following parameters were analyzed statistically:

body weight feed consumption organ weights

2.16.1. METHOD OF ANALYSIS

Mean values of all dose groups were compared to the mean value for the control group at each time interval.

Evaluation of equality of group means was made by the appropriate statistical method, followed by a multiple comparison test if needed. Bartlett's test (Sokal and Rohlf, 1995) was performed to determine if groups had equal variances. For all parameters except organ weights, if the variances were equal, parametric procedures were used; if not, nonparametric procedures

were used. Organ weight data was analyzed only by parametric The parametric method was the standard one-way methods. analysis of variance (ANOVA) using the F ratio to assess significance (Dunlap and Duffy, 1975). If significant differences among the means were indicated, additional tests were used to determine which means were significantly different from the control: Dunnett's (Dunlap et al., 1981), or Cochran and Cox's modified t-test (Cochran and Cox, 1959). The nonparametric method was the Kruskal-Wallis test (Kruskal and Wallis, 1952, 1953) and if differences were indicated, Pairwise Comparison with Bonferroni Correction (Games and Howell, 1976) were used to determine which means differed from control. Bartlett's test for equality of variance was conducted at the 1% significance level; all other statistical tests were conducted at the 5% and 1% significance levels.

2.17. DATA STORAGE

All raw data, and preserved specimens, as well as the original study protocol and the original final report, are to be maintained in the Archives of the Testing Facility upon completion of the study. The Sponsor will determine the final disposition of these materials.

2.18. REGULATORY REFERENCES

2.18.1. TEST GUIDELINES

This study was not designed to meet regulatory requirements. It was designed to provide preliminary toxicity data for the test substance in order to determine appropriate exposure levels for a subsequent OECD 422 study.

2.18.2. GOOD LABORATORY PRACTICES

This study was conducted in compliance with EPA Good Laboratory Practices as set forth in 40 CFR Part 792 (TSCA) and Organization for Economic Cooperation and Development (OECD) Good Laboratory Practices as set forth in ENV/MC/CHEM(98)17.

2.18.3. ANIMAL WELFARE ACT COMPLIANCE

This study complied with all appropriate parts of the Animal Welfare Act regulations: 9 CFR Parts 1 and 2 Final Rules, Federal Register, Volume 54, No. 168, August 31, 1989, pp. 36112-36163, effective October 30, 1989 and 9 CFR Part 3 Animal Welfare Standards; Final Rule, Federal Register, Volume 56, No. 32, February 15, 1991, pp. 6426-6505, effective March 18, 1991.

2.19. PROTOCOL DEVIATIONS

No protocol deviations occurred during this study.

3. RESULTS AND DISCUSSION

3.1. TEST SUBSTANCE ANALYSIS

(Appendix N)

Prestudy GC analysis of the test substance showed a purity of 99.23% for butane. This value compared closely to the purity of 99.96% for the analytical standard of butane and the 99.5% purity as guaranteed by the supplier of the test substance.

3.2. CHAMBER MONITORING

(Appendices A, K & L)

Chamber distribution analyses (see Appendix K) showed that the test substance was evenly distributed within each chamber. Chamber monitoring (see Appendix L) showed that the chamber oxygen levels were at least 19%. Chamber room monitoring (see Appendix L) showed that no test substance was present in the room and that the sound and light levels were acceptable.

The target and mean (± standard deviation) analytical (IR) and nominal concentrations (see Appendix A) are summarized as follows:

Group	Test Substance	Target Concentration (ppm)	Analytical Concentration (ppm)	Nominal Concentration (ppm)
1	Air Control	0	0.00 ± 0.00	0 ± 0
2	Butane	90	91.26 ± 4.74	84.3 ± 0.0
3	Butane	900	910.5 ± 32.9	913 ± 4
4	Butane	9000	9197 ± 328	8581 ± 47

The analytically measured (IR) exposure levels of the airborne test substance were reasonably close to the targeted exposure levels. The differences between measured and nominal concentrations varied somewhat from the expected 1:1 ratio for this type of gas exposure. The exact cause of the differences was not determined but was probably a result of a combination of slight variances in the calibration of the

chamber airflows and the calibration of the IR monitor. Chamber environmental conditions averaged 23°C temperature and 55% relative humidity.

Mean particle size distribution measurements for the exposures (see Appendix A) are summarized as follows:

Group	Test Substance	Mass Median Aerodynamic Diameter (µm)	Geometric Standard Deviation	Total Mass Concentration (mg/m³)
1	Air Control	1.404	2.071	4.55E-03
2	Butane	1.781	2.119	4.85E-03
3	Butane	1.848	1.987	4.29E-03
4	Butane	2.754	2.011	5.89E-03

These results indicated that the atmospheres were essentially gas only, as expected, since there was no substantial difference between the test substance chambers and the air control chamber.

3.3. MORTALITY

(Appendix B)

All animals survived to termination.

3.4. CLINICAL OBSERVATIONS

3.4.1. EXPOSURE PERIODS

(Table 1)

The test animals were unremarkable during the exposure periods.

3.4.2. NON-EXPOSURE PERIODS

(Table 2 & Appendix C)

The test animals were generally unremarkable during the nonexposure periods. Scattered observations such as red staining of the snout were noted but were not attributed to treatment.

3.5. BODY WEIGHTS

(Figures 3-4, Tables 3-4 & Appendices D - E)

There were no statistically significant or exposure-related differences in absolute body weights or in body weight changes in the test substance exposed animals compared to the air control animals.

3.6. FEED CONSUMPTION

(Figure 5-6, Table 5 & Appendix F)

There were no statistically significant or exposure-related differences in feed consumption in the test substance exposed animals compared to the air control animals.

3.7. ORGAN WEIGHTS

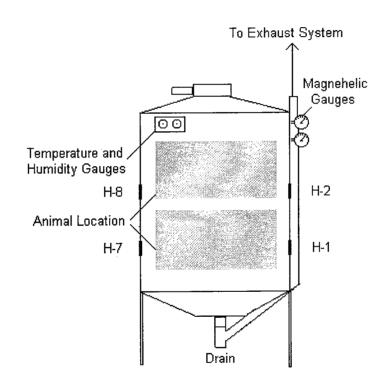
(Table 6 & Appendix G)

There were no exposure-related differences in organ weights (absolute and relative to body weight or brain weight) in the test substance exposed animals compared to the air control animals. A statistically significant increase was noted in thymus-to-body-weight ratio for the 90 ppm exposed male animals. However, in the absence of an exposure level related pattern and any corresponding macroscopic postmortem findings, this difference was considered incidental.

3.8. MACROSCOPIC PATHOLOGY

(Table 7 & Appendix H)

No gross abnormalities related to test substance exposure were evident at necropsy examination. The macroscopic lesions noted were similar to those routinely encountered in animals of this age and species or were represented by individual animals and considered incidental findings.

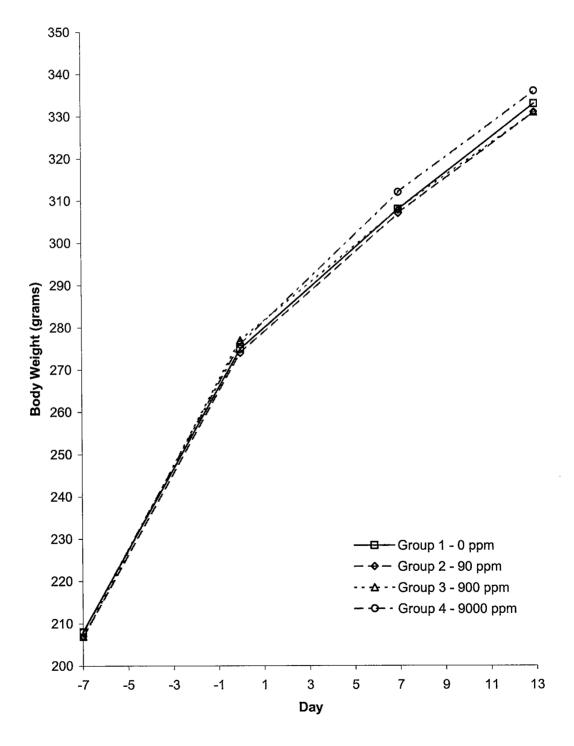

4. CONCLUSION

Two weeks of exposure of rats to butane gas at exposure levels of 90, 900 and 9000 ppm resulted in no effects of exposure. Therefore, the 9000 ppm exposure level was a no observable effect level (NOEL) and was considered an acceptable high exposure level (limited by safety considerations for a flammable gas) for a subsequent OECD 422 study.

REFERENCES

- Cochran, W.G. and Cox, G.M. 1959. Experimental Designs, New York: John Wiley.
- Dunlap, W.P. and Duffy, J.A. 1975. Fortran IV functions for calculating exact probabilities associated with z, chi-square, t and f values. *Behav. Res. Methods and Instrumentations* 7: 59-60.
- Dunlap, W.P., Marx, M.S. and Agamy, G.G. 1981. Fortran IV functions for calculating probabilities associated with Dunnett's test. *Behav. Res. Methods and Instrumentation* 13: 363-366.
- Dunnett, C.W. 1955. A multiple comparison procedure for comparing several treatments with a control. *Journal of the American Statistical Association* 50: 1096-1121.
- Dunnett, C.W. 1964. New tables for multiple comparisons with a control. *Biometrics* 20-3: 482-491.
- Games, P.A. and Howell, J.F. 1976. Pairwise multiple comparison procedures with unequal n's and/or variances: a monte-carlo study. *Journal of Educational Statistics* 1: 113-125.
- Kruskal, W.H. and Wallis, W.A. 1952. Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association 47: 583-621.
- Kruskal, W.H. and Wallis, W.A. 1953. Errata for Kruskal-Wallis (1952). *Journal of the American Statistical Association* 48: 907-911.
- Sokal, R.R. and Rohlf, F.J. 1995. Biometry. 3rd Edition. San Francisco: W.H. Freeman.

		- ,
	Diagram of 1000-Liter Whole-Body Exposure	
Group 1	Chamber and Generation System	Figure 1



GROUP 2

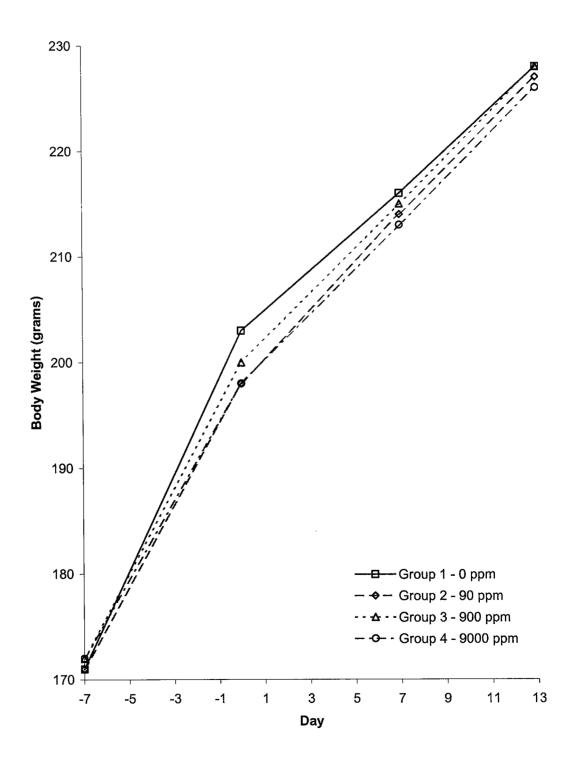
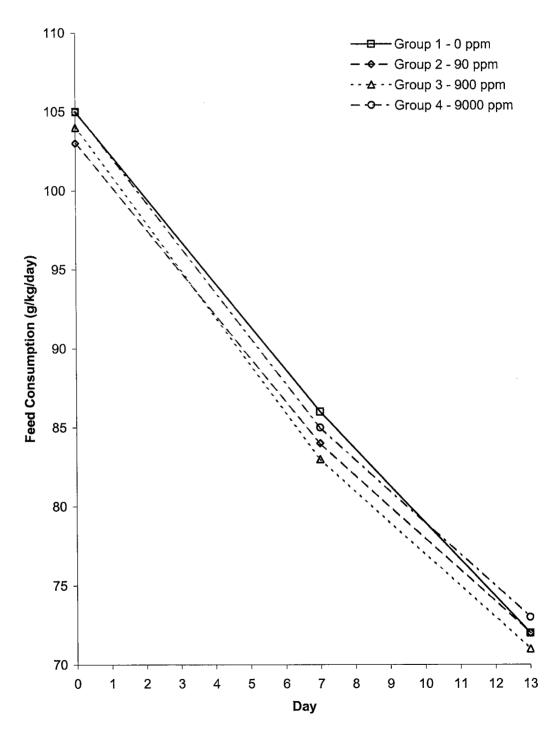
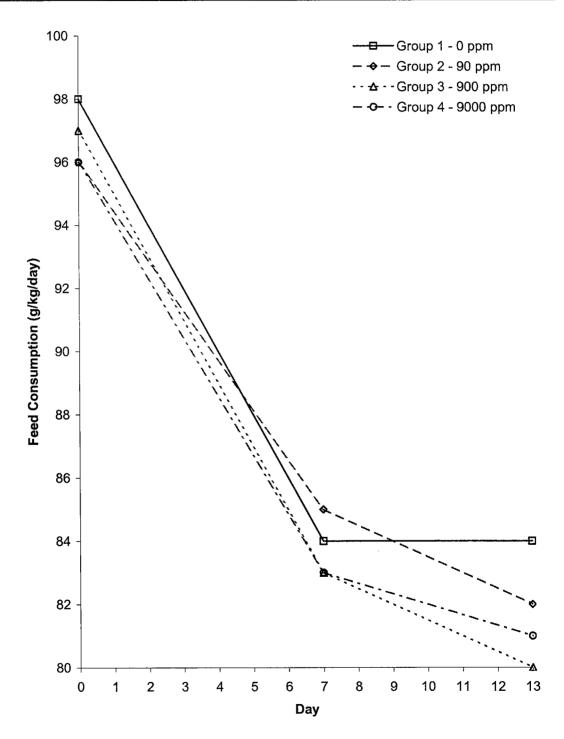

Drain

Diagram of 1000-Liter Whole-Body Exposure Figure 2 **Chamber and Generation System** Groups 2, 3 & 4 Regulator and 00 Backpressure Gauges _Teflon Tubing Flowmeter To Exhaust System 4 00 Magnehelic Gauges Cylinder with Test Substance -Nupro Valve 00 Temperature and , Humidity Gauges H-2 H-8 **Animal Location** H-7 H-1 Drain **GROUP 4** Drain **GROUP 3**


Males	Mean Body Weights	Figure 3


Females	Mean Body Weights	Figure 4

Males	Mean Feed Consumption	Figure 5

Females	Mean Feed Consumption	Figure 6

03-6143	Page 860
· · · · · · · · · · · · · · · · · · ·	Final Report
Compand Drofogo	
	03-6143 General Preface

General Notes

Individual animal data values presented in this report may be rounded. Unrounded individual animal data values are used to calculate the reported mean and standard deviation values. Therefore, use of the reported individual values to reproduce means, standard deviations and/or to perform any subsequent calculations may produce minor discrepancies between the calculated values and those presented in this report.

		5	Summa	Table 1											
Exposure Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14_	15
Group 1 – 0 ppm															
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	All	All	Al
Group 2 – 90 ppm															
Normal Within Normal Limits	Ali	All	All	All	All	All	All	All	All	All	All	All	All	All	Al
Group 3 – 900 ppm															
Normal Within Normal Limits	All	All	All	Ali	All	All	All	All	All	All	All	All	All	All	Al
Group 4 – 9000 ppm															
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	All	Ali	A

All = 100% of the animals exhibiting a given observation.

Summary of Clinical Observations	
 Preface	Table 2

For summarization purposes, descriptive comments [i.e., location of scab(s) and/or sore(s), etc.] are not presented in this table. These data are contained in the study raw data if needed.

Total represents a cumulative total of all animals with the indicated observation one or more times during the study.

Corresponding exposure levels for each group were as follows:

Group 1 - 0 ppm

Group 2 - 90 ppm

Group 3 - 900 ppm

Group 4 - 9000 ppm

TABLE 2

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

MALES						SU	MMAI	RY OF	CLINICAL OBSERVATIONS
	GROUP#		O YY			14	15	TOTAL	
# OF ANIMALS EXAMINED		10	10	10	10	 5	 5		
# OF ANIMALS EXAMINED	2	10	10		10	5	5		
	3	10	10		10		5		
	4		10		10		5		
NORMAL									
WITHIN NORMAL LIMITS	1	10	10	8	8	0	0	10	
	2	10	10	10	10	0	0	10	
	3	10	10	8	9	0	0	10	
	4	10	10	9	9	0	0	10	
DEAD									
Terminal Sacrifice	1	0	0	0	0	5	5	10	
	2	0		0			5	10	·
	3	0	0	0	0	5	5	10	
	4	0	0	0	0	5	5	10	
DERMAL GENERAL									
Ulceration - Cervical	1.	0	0	1	1	0	0	1	
	2	0	0	0			0		
	3	0	0	0		0	0	0	
	4	0	0	0	0	0	0	0	
Scab(s)	1	0	0	1		0	0	1	
	2	0	0	0			0	0	
	3	0		0			0	0	
	4	0	0	0	0	0	0	0	
Alopecia -	. 1	0	0	1	1	0	0	1	
Extremities/Snout	2	0	0	0			0		
	3	0	0	0		0	0		
	4	0	0	1	1	0	0	1	

TABLE 2

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY

STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

MALES						SU	MMAR	YOF	CLINICAL OBSERVATIONS
		D#	AY C	F ST	UDY				
	GROUP#	-7	0	7	13	14	15	TOTAL	
# OF ANIMALS EXAMINED	1	10	10	10	10	5	5		
	2	10	10	10	10	5	5		
	3	10	10	10	10	5	5		
	4	10	10	10	10	5	5		
		•	•	_	^	•		0	
RED STAINS - SNOUT	1	0	0	0	0	0	0	0	
	2	0				0		0	
	3	0.		1		0			
	4	0	0	0	0	0	0	0	
OCULAR									
Chromodacryorrhea -	1	0	0	0			0	0	
Unilateral	2	0	0	0	0	0	0	0	
	3	0	0	1	1	0	0	1	
	4	0	0	0	0	0	0	0	

TABLE 2

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY
STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

FEMALES						SU	IMMAF	RY OF	CLINICAL OBSERVATIONS
	GROUP#		Y C	F SI	UDY 13	14	15	TOTAL	,
								- 	
# OF ANIMALS EXAMINED		10 10	10 10	10 10	10 10	5 5	5 5		
	3	10	10	10	10	5	5		
		10	10		10	5	5		
NORMAL									
WITHIN NORMAL LIMITS	1	10	10	8	8	0	0	10	
	2		10	8	8	0	0	10	
	3	10	10	7	7	0	0	10	
	4	10	10	9	9	0	0	10	
DEAD									
Terminal Sacrifice	1	0	o	0	0	5	5	10	
	2	0	0	0	0			10	
	3	0	0		0			10	
	4	0	0	0	0	5	5	10	
DERMAL GENERAL									
Scab(s)	1	0	0	0	0	O	0	0	
	. 3	٥	0	0	0	0	0	0	
	. 3	0	O	1	1	0	0	1	
	4	0	0	0	0	0	0	0	
Alopecia -	1	0	0	1	1	o	0	1	
Extremities/Snout	2	0	0		1	0	0	1	
•	3	0	0	3	3.	0	0	3	
	4	0	0	1	1	0	0	1	
RED STAINS - SNOUT	1	0	0	1	1	0	0	1	
THE STREET	2	0	ő	ō	Ô	ő	0	ō	
	3	ō	ō	ō	0	0	0	0	

TABLE 2

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

FEMALES		ARY OF CLINICAL OBSERVATIONS						
		D.	YA C					
	GROUP#	-7	0	7	13	14	15	5 TOTAL
# OF ANIMALS EXAMINED	1	10	10	10	10	5	5	5
•	2	10	10	10	10	5	5	5
	3	10	10	10	10	5	5	5
	4	10	10	10	10	5	5	5
23		•			^	•	^	
Alopecia - General	1							0 0
	2	0	0	1	_	0	0	• -
	3	0	0	0	0	0	0	0 0

TABLE 3

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY

STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

MALES			MEAN BODY	WEIGHTS (GRAMS)			
		DOSE GROUP: DOSE LEVEL (PPM):	1	2 90	3 900	4 9000	
DAY	-7	MEAN S.D. N	208 8.2 10	207 9.7 10	207 8.7 10	208 7.3 10	
DAY	0	MEAN S.D. N	275 . 11.8 10	274 10.1 10	277 9.0 10	276 12.8 10	
DAY	7	MEAN S.D. N	308 11.8 10	307 8.7 10	308 13.3 10	312 17.4 10	
DAY	13	MEAN S.D. N	333 17.6 10	331 10.7 10	331 15.3 10	336 22.8 10	

TABLE 3

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY

STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

MALES				WEIGHTS (GRAMS)			
		DOSE GROUP:	1	2	3	4	
	DOSE I	LEVEL (PPM):	0 	90	900	9000	
DAY	-7	MEAN	171	171 ·	172	172	
-	•	S.D.	8.2	7.8	7.9	7.9	
		И	10	1.0	10 .	10	
DAY	0	MEAN	203	198	200	198	
		S.D.	10.5	8.1	12.1	10.7	
		N	io	10	10	10	
DAY	7	MEAN	216	214	215	213	
		s.D.	14.5	8.7	10.3	9.3	
		N	10	10	10	10	
DAY	13	MEAN	228	227	228	226	
		s.D.	14.6	10.8	10.9	9.8	
		N	10	10	10	10	

TABLE 4

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY
STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

							_	
		DOSE	GROUP:	1	2	3	4	
		DOSE LEVEL	(PPM):	0	. 90	900 	9000	
		_			22	32	36	
DAY	0 TO	7	MBAN	33 .	33	= :::		
			S.D.	5.9	3.3	8.2	8 - 2	
			N	10	10	10	10	
DAY	0 TO	13	MEAN	58	57	54	59	
			S.D.	10.2	5.7	14.3	14.0	
			N	10	10	10	10	

TABLE 4

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY
STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

FEMALES				MEAN BODY WEIGHT CHANGE FROM BASELINE (GRAMS)						
	DOSE GROUP: DOSE LEVEL (PPM):			1 0	2 90	3 900	4 9000			
DAY	0 TO	7	MEAN S.D. N	13 9.4 10	16 6.2 10	14 6.0 10	15 5.4 10			
DAY	0 TO	13	MEAN S.D. N	25 8.1 10	29 7.4 10	28 6.1 10	28 8.6 10			

TABLE 5

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY
STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

MALES			MEAN FEED CONSUMPTI	ON VALUES (GRAMS/KG/	DAY)		
	DOSE	DOSE GROUP: LEVEL (PPM):	1 0	2 90	3 900	4 9000	
DAY	0	MEAN S.D. N	105 3.9 10	103 5.5 9	104 4.8 10	105 2.7 10	
DAY	7	MEAN S.D. N	86 4.9 9	84 5.4 10	83 4.9 8	85 2.9 9	
DAY	13	MEAN S.D. N	72 3.7 10	72 1.9 9	71 6.8 9	73 3.4 10	

TABLE 5

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY
STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

					3	4
		OSE GROUP:	1	2	3	4
	DOSE LEV	/EL (PPM):	. 0	90 	900	9000
DAY	0	MEAN	98	96	97	96
		s.D.	6.7	4.6	6.5	6.7
		N	10	10	10	10
DAY	7	MEAN	84	85	83	83
		S.D.	7.7	4.0	4.9	4.2
	•	N	10	10	10	10
DAY	13	MEAN	84	82	80	81
		S.D.	8.1	1.7	3.7	3.8
		N	10	10	10	10

	Mean Organ Weights	
· · · · · · · · · · · · · · · · · · ·	Preface	Table 6

Table of Contents

Absolute Organ Weights	87	4
% Organ to Body Weight F	Ratios87	8
% Organ to Brain Weight F	Ratios88	2

Key to Abbreviations:

g = Grams wt. = Weight observ. = Observed

Corresponding exposure levels for each group were as follows:

Group 1 - 0 ppm Group 2 - 90 ppm Group 3 - 900 ppm Group 4 - 9000 ppm

Huntingdon Life Sciences Princeton Research Center East Millstone, New Jersey

Summary statistics for absolute organ weights (g) Study number: 036143

Printed: 01-Feb-06 Page: 1

Version 4.2.2

Group	Terminal		Brain		Heart		Liver	
	Body wt. (g)	Adrenal Glands	Epidi	ldymides		Kidneys		Lungs
			Male Anima		als	l s		
1								
Mean:	309.1	0.0701	2.1366	0.9055	1.2596	3.3632	11.2665	1.8929
Standard deviation:	18.5	0.0091	0.1118	0.0678	0.0521	0.1948	0.8728	0.2237
Number of observ. :	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2								
Mean:	309.9	0.0669	2.1457	0.9167	1.2490	3.5231	11.2858	1.9188
Standard deviation:	7.8	0.0065	0.0907	0.0807	0.0827	0.3106	0.8842	0.1234
Number of observ. :	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
3								
Mean:	308.7	0.0668	2.1157	0.9157	1.2287	3.4532	11.1262	1.9514
Standard deviation:	15.9	0.0094	0.0781	0.0769	0.1095	0.3328	0.6532	0.2107
Number of observ.	: (10)	(10)	(10)	(10)	(1.0)	(10)	(10)	(10)
4								
Mean:	310.3	0.0706	2.1146	0.9180	1.2409	3.4795	11.9273	1.9407
standard deviation:	23.0	0.0082	0.0959	0.1177	0.1199	0.3542	1.5663	0.1743
Number of observ. :	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(9)

^{*(+) =} mean value of group was significantly different from control at P = 0.05(0.01) with Dunnett's test of significance

^{%(\$) =} mean value of group was significantly different from control at P = 0.05(0.01) with Modified T test of significance

Huntingdon Life Sciences Princeton Research Center East Millstone, New Jersey

Summary statistics for absolute organ weights (g) Study number: 036143

Printed: 01-Feb-06 Page: 2 Version 4.2.2

Group	Terminal	Seminal	vesicles		Testes		
0_0 up	Body wt. (g)	Pituitary gland		Spleen		Thymus	
			Male	Anim	als		
1							
Mean	: 309.1	0.0103	1.0527	0.7378	3.2380	0.5517	
Standard deviation	: 18.5	0.0020	0.1878	0.1088	0.2473	0.1306	
Number of observ.	: (10)	(10)	(10)	(10)	(10)	(10)	
2							
Mean	: 309.9	0.0102	1.0206	0.6855	3.2907	0.6950	
Standard deviation	: 7 <i>.</i> 8	0.0018	0.2589	0.0927	0.1152	0.1771	
Number of observ.	: (10)	(10)	(10)	(10)	(10)	(10)	
3							
Mean	: 308.7	0.0096	0.9701	0.7167	3.2418	0.5483	
Standard deviation		0.0015	0.1966	0.1302	0.2421	0.1252	
Number of observ.		(10)	(10)	(10)	(10)	(10)	
4							
Mean	: 310.3	0.0123	1.1260	0.7423	3.1751	0.5093	
Standard deviation	: 23.0	0.0023	0.2226	0.2212	0.3097	0.1068	
Number of observ.		(10)	(10)	(10)	(10)	(10)	

^{*(+) =} mean value of group was significantly different from control at P = 0.05(0.01) with Dunnett's test of significance %(\$) = mean value of group was significantly different from control at P = 0.05(0.01) with Modified T test of significance

Huntingdon Life Sciences Princeton Research Center East Millstone, New Jersey

Summary statistics for absolute organ weights (g) Study number: 036143

Printed: 01-Feb-06 Page: 1

Version 4.2.2

Group	Terminal		Brain		Kidneys		Lungs	
-	Body wt. (g)	Adrenal Glands		Heart		Liver		Ovaries
			Fema	le An	imals			
1								
Mean:	: 212.6	0.0824	2.0426	0.9307	2.4616	8.6266	1.7845	0.1199
Standard deviation:	: 13.6	0.0120	0.1045	0.0811	0.2699	0.9889	0.2454	0.0195
Number of observ.	: (10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2								
Mean	: 212.0	0.0761	2.0489	0.9193	2.3977	8.3758	1.7555	0.1183
Standard deviation	: 8.1	0.0081	0.0870	0.1083	0.2068	0.9293	0.1884	0.0117
Jumber of observ.		(10)	(10)	(10)	(10)	(10)	(10)	(10)
3								
Mean	: 210.3	0.0746	2.0375	0.9144	2.3323	7.9702	1.7077	0.1088
standard deviation	: 11.5	0.0108	0.1003	0.0570	0.2308	0.8089	0.2722	0.015
Tumber of observ.	: (10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
4								
Mean	208.8	0.0816	2.0233	0.8985	2.3711	8.3570	1.7848	0.115
standard deviation	: 7.6	0.0124	0.0811	0.0534	0.1959	0.7493	0.3264	0.020
Number of observ.		(10)	(10)	(10)	(10)	(10)	(10)	(10

^{*(+) =} mean value of group was significantly different from control at P = 0.05(0.01) with Dunnett's test of significance %(S) = mean value of group was significantly different from control at P = 0.05(0.01) with Modified T test of significance

Huntingdon Life Sciences Princeton Research Center East Millstone, New Jersey Terminal Sacrifice Summary statistics for absolute organ weights (g) Study number: 036143 Printed: 01-Feb-06 Page: 2

Version 4.2.2

Group	Terminal		Spleen		Uterus		
-	Body wt. (g)	Pituitary gland		Thymus			
			Fema	le An	i m a l s		
1							
Mean	212.6	0.0145	0.4941	0.5151	0.55 87		
Standard deviation	: 13.6	0.0019	0.0663	0.0934	0.0705		
Number of observ.		(10)	(10)	(10)	(10)		
2						•	
Mean	: 212.0	0.0133	0.5512	0.5597	0.6087		
Standard deviation	: 8.1	0.0015	0.0948	0.1000	0.2015		
Number of observ.	: (10)	(10)	(10)	(10)	(10)		
3							
Mean	: 210.3	0.0138	0.5177	0.4853	0.6667		
Standard deviation	: 11.5	0.0021	0.0776	0.0825	0.1780		
Number of observ.	: (10)	(10)	(10)	(10)	(10)		
4							
Mean	: 208.8	0.0142	0.5362	0.4504	0.5501		
Standard deviation	: 7.6	0.0020	0.0727	0.0518	0.0769		
Number of observ.		(10)	(10)	(10)	(10)		

^{*(+) =} mean value of group was significantly different from control at P = 0.05(0.01) with Dunnett's test of significance

^{%(\$) =} mean value of group was significantly different from control at P = 0.05(0.01) with Modified T test of significance

Huntingdon Life Sciences Princeton Research Center East Millstone, New Jersey

Summary Statistics for % Organ to Body Weight Study number: 036143

Printed: 01-Feb-06 Page: 1 Version 4.2.2

Terminal Sacrifice

Group	Terminal		Brain		Heart		Liver	
-	Body wt. (g)	Adrenal Glands	Epidi	dymides		Kidneys		Lungs
			Male	Anim	als			
1								
Mean	: 309.1	0.0228	0.6931	0.2938	0.4085	1.0910	3.6462	0.6150
Standard deviation	: 18.5	0.0035	0.0496	0.0277	0.0246	0.0851	0.2232	0.0862
Number of observ.	: (10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2								
Mean	: 309.9	0.0216	0.6924	0.2961	0.4032	1.1364	3.6421	0.6196
Standard deviation	. 7.8	0.0024	0.0227	0.0285	0.0273	0.0896	0.2724	0.0448
Number of observ.	: (10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
3								
Mean	: 308.7	0.0217	0.6867	0.2976	0.3984	1.1228	3.6089	0.6323
Standard deviation	: 15.9	0.0032	0.0360	0.0322	0.0334	0.1394	0.2176	0.0615
Number of observ.	: (10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
4								
Mean	: 310.3	0.0228	0.6853	0.2970	0.4001	1.1238	3.8601	0.6311
Standard deviation		0.0028	0.0641	0.0404	0.0270	0.1071	0.5935	0.0414
Number of observ.		(10)	(10)	(10)	(10)	(10)	(10)	(9)

^{*(+) =} mean value of group was significantly different from control at P = 0.05(0.01) with Dunnett's test of significance

^{%(\$) =} mean value of group was significantly different from control at P = 0.05(0.01) with Modified T test of significance

Huntingdon Life Sciences Princeton Research Center East Millstone, New Jersey

Summary Statistics for % Organ to Body Weight Study number: 036143

Printed: 01-Feb-06 Page: 2

Version 4.2.2

Group	Terminal	Seminal	vesicles		Testes		
•	Body wt. (g)	Pituitary gland		Spleen		Thymus	
			Male	Anim	als		
1							
Mean:	309.1	0.0034	0.3409	0.2386	1.0511	0.1773	
tandard deviation:	18.5	0.0008	0.0608	0.0313	0.1056	0.0348	
number of observ. :	(10)	(10)	(10)	(10)	(10)	(10)	
2							
Mean:	309.9	0.0033	0.3299	0.2215	1.0625	0.2242*	
tandard deviation:	7.8	0.0006	0.0859	0.0318	0.0474	0.0554	
umber of observ. :	(10)	(10)	(10)	(10)	(10)	(10)	
3							
Mean:	308.7	0.0031	0.3149	0.2329	1.0541	0.1773	
tandard deviation:	15.9	0.0005	0.0638	0.0449	0.1106	0.0377	
umber of observ. :	(10)	(10)	(10)	(10)	(10)	(10)	
4							
Mean:	310.3	0.0039	0.3648	0.2414	1.0266	0.1631	
tandard deviation:	23.0	0.0007	0.0773	0.0852	0.1070	0.0274	
Number of observ. :	(10)	. (10)	(10)	(10)	(10)	(10)	

*(+) = mean value of group was significantly different from control at P = 0.05(0.01) with Dunnett's test of significance

 $^{%(\}xi)$ = mean value of group was significantly different from control at P = 0.05(0.01) with Modified T test of significance

Huntingdon Life Sciences Princeton Research Center East Millstone, New Jersey

Summary Statistics for % Organ to Body Weight Study number: 036143

Printed: 01-Feb-06 Page: 1

Version 4.2.2

Group	Terminal		Brain		Kidneys		Lungs	
	Body wt. (g)	Adrenal Glands		Heart		Liver		Ovaries
			Fema	le An	imals			
1								
Mean:	212.6	0.0389	0.9633	0.4379	1.1575	4.0595	0.8409	0.0564
Standard deviation:	: 13.6	0.0060	0.0611	0.0274	0.1027	0.4009	0.1161	0.0088
Number of observ.	: (10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2								
Mean:	212.0	0.0359	0.9678	0.4338	1.1319	3.9511	0.8285	0.0559
Standard deviation:	8.1	0.0034	0.0515	0.0500	0.0971	0.4087	0.0859	0.0057
Number of observ.	: (10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
3								
Mean	210.3	0.0354	0.9713	0.4351	1.1095	3.7926	0.8114	0.0517
Standard deviation:	11.5	0.0042	0.0636	0.0205	0.0956	0.3575	0.1143	0.0068
Number of observ.	: (10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
. 4								
Mean:	208.8	0.0391	0.9699	0.4307	1.1355	4.0061	0.8572	0.0554
Standard deviation:	7.6	0.0057	0.0498	0.0289	0.0837	0.3857	0.1700	0.0105
Number of observ.	: (10)	. (10)	(10)	(10)	(10)	(10)	(10)	(10)

^{*(+)} = mean value of group was significantly different from control at P = 0.05(0.01) with Dunnett's test of significance

^{*(\$) =} mean value of group was significantly different from control at P = 0.05(0.01) with Modified T test of significance

Huntingdon Life Sciences Princeton Research Center East Millstone, New Jersey

Summary Statistics for % Organ to Body Weight Study number: 036143

Printed: 01-Feb-06 Page: 2

Version 4.2.2

Group	Terminal		Spleen		Uterus	
-	Body wt. (g)	Pituitary gland		Thymus		
			Fema	le An	i m a l s	
1						
Mean	: 212.6	0.0069	0.2326	0.2430	0.2637	
Standard deviation	: 13.6	0.0010	0.0297	0.0444	0.0364	
Number of observ.	: (10)	(10)	(10)	(10)	(10)	
2						
Mean	: 212.0	0.0063	0.2599	0.2634	0.2873	
Standard deviation:	: 8.1	0.0008	0.0436	0.0416	0.0947	
umber of observ.	: (10)	(10)	(10)	(10)	(10)	
3						
Mean	: 210.3	0.0066	0.2464	0.2316	0.3178	
tandard deviation	: 11.5	0.0009	0.0374	0.0423	0.0884	
Jumber of observ.	: (10)	(10)	(10)	(10)	(10)	
4						
Mean:	208.8	0.0068	0.2571	0.2164	0.2633	
Standard deviation:	: 7.6	0.0010	0.0370	0.0302	0.0342	
Number of observ.	: (10)	(10)	(10)	(10)	(10)	

^{*(+) =} mean value of group was significantly different from control at P = 0.05(0.01) with Dunnett's test of significance %(\$) = mean value of group was significantly different from control at P = 0.05(0.01) with Modified T test of significance

Huntingdon Life Sciences Princeton Research Center East Millstone, New Jersey

Summary Statistics for % Organ to Brain Weight Study number: 036143

Printed: 01-Feb-06 Page: 1 Version 4.2.2

Terminal Sacrifice

Group	Terminal		Brain		Heart		Liver	
_	Body wt. (g)	Adrenal Glands	Epid	idymides		Kidneys		Lungs
· · · · · · · · · · · · · · · · · · ·			Male	Anim	als			
1								
Mean	: 309.1	3.2969	100.0000	42.4978	59.1157	157.8305	528.5156	88.7258
Standard deviation	: 18.5	0.5005	0.0000	4.1002	4.2130	12.7271	48.9553	10.7292
Number of observ.	: (10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2								
Mean	: 309.9	3.1248	100.0000	42.8070	58.3277	164.1024	526.5806	89.5767
Standard deviation	. 7.8	0.3432	0.0000	4.3306	4.8568	11.3044	43.2084	7.0764
Number of observ.	: (10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
3								
Mean	: 308.7	3.1623	100.0000	43.2824	58.0917	163.5371	526.3789	92.3645
Standard deviation	: 15.9	0.4665	0.0000	3.3585	5.0583	18.3315	34.4989	10.9394
Number of observ.	: (10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
4								
Mean	: 310.3	3.3517	100.0000	43.4754	58.7346	164.4068	564.7740	92.3062
Standard deviation	: 23.0	0.4941	0.0000	5.7519	5.5639	13.0502	75.7504	11.3656
Number of observ.	: (10)	(10)	(10)	(10)	(10)	(10)	(10)	(9)

^{*(+) =} mean value of group was significantly different from control at P = 0.05(0.01) with Dunnett's test of significance

^{%(\$) =} mean value of group was significantly different from control at P = 0.05(0.01) with Modified T test of significance

Huntingdon Life Sciences Princeton Research Center East Millstone, New Jersey

Mean:

23.0

(10)

0.1147

(10)

Standard deviation:

Number of observ. :

Summary Statistics for % Organ to Brain Weight Study number: 036143

10.2888

(10)

13.6547

(10)

5.6996

(10)

Printed: 01-Feb-06 Page: 2

Version 4.2.2

Terminal Sacrifice Seminal vesicles Group Terminal Testes Body wt. (q) Spleen Thymus Pituitary gland Male Animals 1 25.8206 Mean: 309.1 0.4839 49.2407 34.6479 151.9882 Standard deviation: 18.5 0.0963 8,4807 5.7044 14.8294 5.9914 Number of observ. : (10) (10) (10) (10) (10) (10) Mean: 309.9 0.4744 47.7910 32.0771 153.6751 32.6000 Standard deviation: 0.0865 12.8491 5.0731 9.6626 8.9052 7.8 Number of observ. : (10) (10) (10) (10) (10) (10) 3 308.7 0.4537 45.7370 33.8516 153.3421 25.9785 Mean: 5.9277 Standard deviation: 15.9 0.0613 8.3428 11.8202 6.1405 Number of observ. : (10) (10) (10) (10) (10) (10) 53.1617 35.1070 24.2120 310.3 0.5809 150,2226

9.9136

(10)

^{*(+)} = mean value of group was significantly different from control at P = 0.05(0.01) with Dunnett's test of significance

^{%(\$) =} mean value of group was significantly different from control at P = 0.05(0.01) with Modified T test of significance

Huntingdon Life Sciences Princeton Research Center East Millstone, New Jersey

Summary Statistics for % Organ to Brain Weight Study number: 036143

Printed: 01-Feb-06 Page: 1 Version 4.2.2

Group	Terminal		Brain		Kidneys		Lungs	
-	Body wt. (g)	Adrenal Glands		Heart		Liver		Ovaries
			Fema	le An	i m a l s			
1								
Mean	: 212.6	4.0471	100.0000	45.5944	120.5404	422.8045	87.4052	5.9002
Standard deviation	: 13.6	0.6639	0.0000	3.6978	12.3952	48.6271	11.7340	1.1017
Number of observ.	: (10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2								
Mean	: 212.0	3.7239	100.0000	44.8308	117.0894	408.7192	85.8067	5.7842
Standard deviation	: 8.1	0.4677	0.0000	4.6178	9.5995	41.5741	9.9256	0.6569
Number of observ.	: (10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
3								
Mean	: 210.3	3.6683	100.0000	44.9249	114.6700	391.7837	83.8030	5.3658
Standard deviation	: 11.5	0.5873	0.0000	2.7710	12.4206	42.1405	12.3352	0.9686
Number of observ.	: (10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
4								
Mean	: 208.8	4.0413	100.0000	44.4199	117.1798	412.9518	88.6999	5.7289
Standard deviation	: 7.6	0.6451	0.0000	2.2901	8.2604	31.2799	18.7634	1.1305
Number of observ.	: (10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)

^{*(+) =} mean value of group was significantly different from control at P = 0.05(0.01) with Dunnett's test of significance

^{%(\$) =} mean value of group was significantly different from control at P = 0.05(0.01) with Modified T test of significance

Huntingdon Life Sciences Princeton Research Center East Millstone, New Jersey

Summary Statistics for % Organ to Brain Weight Study number: 036143

Printed: 01-Feb-06 Page: 2

Version 4.2.2

Terminal Sacrifice Spleen Uterus Group Terminal Pituitary gland Thymus Body wt. (g) Animals Female 24.1826 25,2678 27.4335 0.7127 Mean: 212.6 3.9068 4.7602 2.9550 Standard deviation: 13.6 0.0956 (10) (10) Number of observ. : (10) (10) (10) 29.6705 26.8606 27.3059 Mean: 212.0 0.6504 9.5260 0.0844 4.1270 4.6673 8.1 Standard deviation: (10) (10) (10) (10) (10) Number of observ. : 3 32.8497 0.6794 25.4606 23.9442 210.3 Mean: 4.0048 4.6602 9.2346 0.1004 Standard deviation: 11.5 (10) (10) (10) (10) Number of observ. : (10) 26.4993 22.2884 27.1482 208.8 0.6999 Mean: 3.4112 2.7202 3.2818 0.0939 Standard deviation: 7.6 (10) (10) (10) (10) (10) Number of observ. :

^{**(+) =} mean value of group was significantly different from control at P = 0.05(0.01) with Dunnett's test of significance %(\$) = mean value of group was significantly different from control at P = 0.05(0.01) with Modified T test of significance

Pa	ge	886
<u>Final</u>	Re	port

Incidence Summary Report	
for Gross Necropsy Observations	
Preface	Table 7

Key to Abbreviations

LN

= Lymph Node= Submandibul

Submandib/Max

Submandibular/Submaxillary

Corresponding exposure levels for each group were as follows:

Group 1 - 0 ppm Group 2 - 90 ppm Group 3 - 900 ppm Group 4 - 9000 ppm

Huntingdon Life Sciences Princeton Research Center East Millstone, New Jersey Terminal Sacrifice

Incidence Summary Report for Gross Necropsy Observations Study number: 036143

Printed: 11-Sep-03 Page: 1

Version 4.2.2

		- Male			:	Femal			
Group:	1	2	3	4	1	2	3	4	
Number in group:	10	10	10	10	10	10	10	10	
Within normal limits	8	8	8	8) 9 	8	9	9	
Cecum	_					•		0	
Abnormal Contents	0	1	0	0	0	0	0	0	
Ileum									
Abnormal Contents	0	1	. 0	0	0	0	0	Ο	
Jejunum					Į				
Abnormal Contents	0	1	. 0	0	0	0	0	0	
Kidneys									
Dilated Pelvis	0	0	2	0	0	0	0	0	
Lungs					1				
Discolored	0	2	0	1	0	. 1	0	1	
Seminal vesicles									
Small	1	0	0	0	0	0	0	0	
Skin-protocol					1				
Hair Thin/Absent	0	0	0	0	0	1	0	0	
Spleen					1				
Irregular Surface	. 0	0	0	1	0	0	0	0	•
Discolored	0	D .	0	1	1 0	0	0	0	
<u> Phymus</u>					1				
Discolored	0	1	0	0	0	0	1	0	•
Jrinary bladder									•
Calculus	Ö	0	1	0	0	0	0	0	
Thickened	0	0	1	0	0	0	0	0	
Skin (other)					1				
Sore	1	0	0	0	0	0	0	0	
Submandib/Max LN					1				
Enlarged	0	0	1	0	0	0	0	0	
Lymph Node,other					ļ				
Enlarged	0	0	1	0	0	0	0	0	

Huntingdon Life Sciences Princeton Research Center East Millstone, New Jersey Incidence Summary Report for Gross Necropsy Observations Study number: 036143

Printed: 11-Sep-03 Page: 2 Version 4.2.2

Termi	inal	Sacr	·i.t	1	ce	3

Terminal Sacrifice		- Male			·-·		Femal	es		
Group: Number in group:	1	2	3	4 10		1 10	2 10	3 10	4 10	
Extremity Hair thin/ absent	0	0	0	0		1	0	0	0	

Chamber Menitoring Beaute	Annondiy A
Chamber Monitoring Results	Appendix A

						Group	1 – 0 ppm (Air Contr	ol)				
												Chamber En	vironment
]	Particle Siz	е	Me	an
Day	Date	Exposure	Nominal	Aı	Analytical Chamber Concentration Determinations Temperatu			Temperature	Humidity				
		Number		Mean		Indi	vidual		MMAD	GSD	TMC		
			(ppm)	(ppm)		(р	pm)		(µm)		(mg/m³)	(°C)	(%)
0	8-Jul-03	1	0	0.00	0.00	0.00	0.00	0.00	0.931	2.230	8.19E-03	23	54
1	9-Jul-03	2	0	0.00	0.00	0.00	0.00	0.00	1.675	2.256	3.14E-03	24	55
2	10-Jul-03	3	0	0.00	0.00	0.00	0.00	0.00	1.055	2.412	3.37E-03	23	56
3	11-Jul-03	4	0	0.00	0.00	0.00	0.00	0.00	0.874	2.087	6.17E-03	23	55
4	12-Jul-03	5	0	0.00	0.00	0.00	0.00	0.00	3.764	2.341	2.18E-03	24	55
5	13-Jul-03	6	0	0.00	0.00	0.00	0.00	0.00	1.067	2.413	7.27E-03	23	55
6	14-Jul-03	7	0	0.00	0.00	0.00	0.00	0.00	1.546	2.127	1.51E-03	23	55
7	15-Jul-03	8	0	0.00	0.00	0.00	No Value	0.00	0.860	1.671	3.48E-03	23	55
8	16-Jul-03	9	0	0.00	0.00	0.00	0.00	0.00	0.952	2.022	4.03E-03	23	55
9	17-Jul-03	10	0	0.00	0.00	0.00	0.00	0.00	0.997	2.625	2.69E-03	24	54
10	18-Jul-03	11	0	0.00	0.00	0.00	0.00	0.00	2.107	2.111	2.39E-03	24	60
11	19-Jul-03	12	0	0.00	0.00	0.00	0.00	0.00	1.551	1.945	1.02E-03	23	56
12	20-Jul-03	13	0	0.00	0.00	0.00	0.00	0.00	2.118	2.160	1.20E-03	23	55
13	21-Jul-03	14	0	0.00	0.00	0.00	0.00	0.00	0.778	1.324	1.33E-02	23	55
14	22-Jul-03	15	0	0.00	0.00	0.00	0.00	0.00	0.791	1.340	8.28E-03	22	57
		Mean	0			0	.00		1.404	2.071	4.55E-03	23.2	55.5
		S.D.	0			0	.00		0.796	0.374	3.44E-03	0.6	1.5

Key: MMAD = Mass Median Aerodynamic Diameter; GSD = Geometric Standard Deviation; TMC = Total Mass Concentration; ppm = parts per million; μm = microns; mg/m³ = milligrams per cubic meter.

Chamber Monitoring Results	Appendix A

						G	roup 2 – 9	0 ppm						
												Chamber En	vironment	
					•				1	Particle Siz	е	Mean		
Day	Date	Exposure	Nominal	Ar	nalytical C	hamber C	oncentrat	ion	De	eterminatio	ns	Temperature	Humidity	
		Number		Mean		Indiv	idual		MMAD	GSD	TMC			
			(ppm)	(ppm)		(pp	m)		(µm)		(mg/m³)	(°C)	(%)	
0	8-Jul-03	1	84.3	88.48	90.5	88.2	77.9	97.3	1.496	2.749	1.11E-02	23	57	
1	9-Jul-03	2	84.3	90.73	84.7	93.9	92.7	91.6	1.941	2.249	2.96E-03	23	57	
2	10-Jul-03	3	84.3	90.73	92.7	88.2	92.7	89.3	3.558	3.118	5.56E-03	23	57	
3	11-Jul-03	4	84.3	89.58	95.0	79.0	92.7	91.6	0.860	1.774	5.96E-03	23	57	
4	12-Jul-03	5	84.3	90.48	93.9	90.5	88.2	89.3	1.477	2.231	9.60E-04	23	56	
5	13-Jul-03	6	84.3	90.48	91.6	91.6	90.5	88.2	0.918	1.972	4.02E-03	23	56	
6	14-Jul-03	7	84.3	92.45	91.6	91.6	93.9	92.7	3.381	2.163	3.06E-03	23	56	
7	15-Jul-03	8	84.3	91.95	90.5	93.9	101	82.4	0.912	2.039	4.27E-03	23	56	
8	16-Jul-03	9	84.3	90.73	88.2	92.7	92.7	89.3	0.889	1.694	3.59E-03	23	58	
9	17-Jul-03	10	84.3	91.88	87.0	93.9	95.0	91.6	0.854	2.008	2.17E-03	23	56	
10	18-Jul-03	11	84.3	92.73	89.3	87.0	97.3	97.3	2.417	2.151	2.98E-03	24	61	
11	19-Jul-03	12	84.3	92.15	80.1	103	96.2	89.3	1.465	1.843	8.70E-04	23	58	
12	20-Jul-03	13	84.3	93.88	95.0	97.3	92.7	90.5	4.966	2.568	1.78E-03	23	56	
13	21-Jul-03	14	84.3	93.03	96.2	95.0	89.3	91.6	0.789	1.843	1.48E-02	23	57	
14	22-Jul-03	15	84.3	89.60	95.0	93.9	83.6	85.9	0.795	1.376	8.69E-03	22	57	
		Mean	84.3			91	.26		1.781	2.119	4.85E-03	23.0	57.0	
		S.D.	0.0			4.	74		1.268	0.437	3.92E-03	0.4	1.3	

Key: MMAD = Mass Median Aerodynamic Diameter; GSD = Geometric Standard Deviation; TMC = Total Mass Concentration; ppm = parts per million; μm = microns; mg/m³ = milligrams per cubic meter.

Chamber Monitoring Results	Appendix A

						Gr	oup 3 – 90	00 ppm					
												Chamber En	vironment
]	Particle Siz	Mean		
Day	Date	Exposure	Nominal	Ar	nalytical C	hamber C	oncentrat	ion	De	eterminatio	ns	Temperature	Humidity
		Number		Mean		Indiv	idual		MMAD	GSD	TMC		
			(ppm)	(ppm)		(pp	om)		(µm)		(mg/m³)_	(°C)	(%)
0	8-Jul-03	1	908	877.5	864	879	864	903	0.907	2.201	7.22E-03	23	54
1	9-Jul-03	2	915	890.5	902	870	870	920	1.192	2.066	2.16E-03	24	54
2	10-Jul-03	3	915	899.8	941	905	875	878	0.940	1.941	2.96E-03	23	55
3	11-Jul-03	4	915	896.8	878	893	909	907	0.844	1.669	5.44E-03	23	54
4	12-Jul-03	5	915	922.0	940	912	920	916	2.125	2.382	1.25E-03	23	54
5	13-Jul-03	6	915	916.5	917	918	918	913	0.952	1.667	2.78E-03	23	54
6	14-Jul-03	7	914	889.3	907	895	889	866	6.460	2.667	3.85E-03	23	53
7	15-Jul-03	8	915	896.8	922	910	874	881	0.876	1.914	3.64E-03	23	53
8	16-Jul-03	9	915	919.8	932	931	908	908	0.923	1.885	4.10E-03	23	53
9	17-Jul-03	10	915	921.5	920	928	916	922	1.764	2.442	3.18E-03	23	53
10	18-Jul-03	11	915	889.8	905	908	919	827	1.516	1.955	2.05E-03	24	59
11	19-Jul-03	12	915	911.8	928	904	919	896	0.990	1.486	5.76E-04	23	54
12	20-Jul-03	13	915	933.3	972	942	897	922	6.649	2.500	2.22E-03	23	54
13	21-Jul-03	14	915	924.5	945	918	909	926	0.784	1.564	1.40E-02	23	53
14	22-Jul-03	15	899	967.8	1060	989	907	915	0.796	1.463	8.92E-03	22	54
		Mean	913			91	0.5		1.848	1.987	4.29E-03	23.1	54.1
		S.D.	4			32	2.9		1.950	0.384	3.47E-03	0.5	1.5

Key: MMAD = Mass Median Aerodynamic Diameter; GSD = Geometric Standard Deviation; TMC = Total Mass Concentration; ppm = parts per million; μm = microns; mg/m³ = milligrams per cubic meter.

Chamber Monitoring Results	Appendix A

•	 					Gre	oup 4 – 90	00 ppm					
										Particle Siz	e	Chamber En	
Day	Date	Exposure	Nominal	Ar	nalytical C	hamber C	oncentrat	ion	D	eterminatio	ns	Temperature	Humidity
		Number		Mean		Indiv	idual		MMAD	GSD	TMC		
			(ppm)	(ppm)		(pp	m)		(µm)		(mg/m³)	(°C)	(%)
0	8-Jul-03	1	8570	8998	9150	8840	8950	9050	0.859	1.593	5.91E-03	23	54
1	9-Jul-03	2	8570	8940	8810	8810	9070	9070	8.251	2.839	4.43E-03	23	55
2	10-Jul-03	3	8570	9283	9580	9440	9170	8940	0.986	1.656	2.15E-02	23	54
3	11-Jul-03	4	8570	9140	9120	9100	9120	9220	0.839	1.529	5.44E-03	23	54
4	12-Jul-03	5	8570	9100	9050	9180	9050	9120	1.533	1.946	1.06E-03	23	54
5	13-Jul-03	6	8570	9188	9220	9340	9120	9070	15.70	3.508	6.59E-03	23	54
6	14-Jul-03	7	8560	9185	9120	9140	9310	9170	1.220	1.886	1.18E-03	23	54
7	15-Jul-03	8	8570	9103	8970	9140	9180	9120	0.909	2.208	4.31E-03	23	54
8	16-Jul-03	9	8750	9100	7250	9600	9730	9820	0.915	1.795	4.16E-03	23	54
9	17-Jul-03	10	8570	9298	9150	9370	9320	9350	0.859	1.908	2.28E-03	23	54
10	18-Jul-03	11	8570	9430	9350	9300	9540	9530	2.410	2.075	3.30E-03	24	59
11	19-Jul-03	12	8570	9400	9420	9470	9400	9310	3.613	2.051	2.54E-03	23	55
12	20-Jul-03	13	8570	9188	9080	9120	9250	9300	1.622	2.086	8.12E-04	23	55
13	21-Jul-03	14	8570	9233	9100	9210	9350	9270	0.786	1.493	1.49E-02	23	54
14	22-Jul-03	15	8570	9370	9410	9420	9310	9340	0.806	1.598	1.00E-02	22	56
		Mean	8581			91	97		2.754	2.011	5.89E-03	23.0	54.7
		S.D.	47			32	28		4.073	0.536	5.68E-03	0.4	1.3

Key: MMAD = Mass Median Aerodynamic Diameter; GSD = Geometric Standard Deviation; TMC = Total Mass Concentration; ppm = parts per million; μm = microns; mg/m³ = milligrams per cubic meter.

APPENDIX B

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

ANIMAL TERMINATION HISTORY

NIMAL#	TYPE OF DEATH	DATE OF DEATH	WEEK OF STUDY	STUDY DAY
1211	Terminal Sacrifice	22-JUL-03	3	14
1212	Terminal Sacrifice	22-JUL-03	3	14
1213	Terminal Sacrifice	22-JUL-03	3	14
1214	Terminal Sacrifice	22-ЛИЬ-03	3	14
1215	Terminal Sacrifice	22-JUL-03	3	14
1216	Terminal Sacrifice	23-JUL-03	3	15
1217	Terminal Sacrifice	23-JUL-03	3	1.5
1218	Terminal Sacrifice	23-JUL-03	3	15
1219	Terminal Sacrifice	23-JUL-03	3	15
1220	Terminal Sacrifice	23-JUL-03	3	15

APPENDIX B

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

NIMAL#	TYPE OF DEATH	DATE OF DEATH	WEEK OF STUDY	STUDY DAY
2211	Terminal Sacrifice	22-JUL-03	3	14
2212	Terminal Sacrifice	22-JUL-03	3	14
2213	Terminal Sacrifice	22-JUL-03	3	14
2214	Terminal Sacrifice	22-JUL-03	3	14
2215	Terminal Sacrifice	22-JUL-03	3	14
2216	Terminal Sacrifice	23-JUL-03	3	15
2217	Terminal Sacrifice	23-JUL-03	3	15
2218	Terminal Sacrifice	23-JUL-03	3	15
2219	Terminal Sacrifice	23-JUL-03	3	15
2220	Terminal Sacrifice	23-JUL-03	3	15

APPENDIX B

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

NIMAL#	TYPE OF DEATH	DATE OF DEATH	WBEK OF STUDY	STUDY DAY
3211	Terminal Sacrifice	22-JUL-03	3	14
3212	Terminal Sacrifice	22-JUL-03	3	14
3213	Terminal Sacrifice	22-JUL-03	3	14
3214	Terminal Sacrifice	22-JUL-03	3	14
3215	Terminal Sacrifice	22-JUL-03	3	14
3216	Terminal Sacrifice	23-JUL-03	3	15
3217	Terminal Sacrifice	23-JUL-03	3	15
3218	Terminal Sacrifice	23-ЛИЦ-03	3	15
3219	Terminal Sacrifice	23-JUL-03	3	15
3220	Terminal Sacrifice	23-JUL-03	3	15

APPENDIX B

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

	TYPE OF	DATE OF	WEEK OF	STUDY	
NIMAL#	DEATH	DEATH	STUDY	DAY	
4211	Terminal Sacrifice	22-JUL-03	3	14	
4212	Terminal Sacrifice	22-JUL-03	3	14	
4213	Terminal Sacrifice	22-JUL-03	3	14	
4214	Terminal Sacrifice	22-JUL-03	3	14	
4215	Terminal Sacrifice	22-JUL-03	3	14	
4216	Terminal Sacrifice	23~JUL-03	3	15	
4217	Terminal Sacrifice	23-JUL-03	3	15	
4218	Terminal Sacrifice	23-JUL-03	3	1.5	
4219	Terminal Sacrifice	23-JUL-03	3	15	
4220	Terminal Sacrifice	23-JUL-03	3	15	

APPENDIX B

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

	TYPE OF	DATE OF	WEEK OF	STUDY	
ANIMAL#	DEATH	DEATH	STUDY	DAY	
1711	Terminal Sacrifice	22-JUL-03	3	14	
1712	Terminal Sacrifice	22-JUL-03	3	14	
1713	Terminal Sacrifice	22-JUL-03	3	14	
1714	Terminal Sacrifice	22~JUL-03	3	14	
1715	Terminal Sacrifice	· 22-JUL-03	3	14	
1716	Terminal Sacrifice	23-JUL-03	3	15	
1717	Terminal Sacrifice	23~JUL-03	3	15	
1718	Terminal Sacrifice	23-JUL-03	3	15	
1719	Terminal Sacrifice	23-JUL-03	3	15	
1720	Terminal Sacrifice	23-JUL-03	3	1.5	

APPENDIX B

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

	TYPE OF	DATE OF	WEEK OF	STUDY
ANIMAL#	DEATH	DEATH	STUDY	DAY
2711	Terminal Sacrifice	22-JUL-03	3	14
2712	Terminal Sacrifice	22-JUL-03	3	14
2713	Terminal Sacrifice	22-JUL-03	3	14
2714	Terminal Sacrifice	22-JUL-03	3	14
2715	Terminal Sacrifice	22-JUL-03	3	14
2716	Terminal Sacrifice	23-JUL-03	3	15
2717	Terminal Sacrifice	23-JUL-03	3	1.5
2718	Terminal Sacrifice	23-JUL-03	3	15
2719	Terminal Sacrifice	23-JUL-03	3	15
2720	Terminal Sacrifice	23-JUL-03	3	15

APPENDIX B

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

	FEMALES	GROUP	3	900	PPM
--	---------	-------	---	-----	-----

. #JAMIN	TYPE OF DEATH	DATE OF DEATH	WEEK OF STUDY	STUDY DAY
3711	Terminal Sacrifice	22-JUL-03	 3	14
3712	Terminal Sacrifice	. 22-JUL-03	3	14
3713	Terminal Sacrifice	22-JUL-03	3	14
3714	Terminal Sacrifice	22-JUL-03	3	14
3715	Terminal Sacrifice	22-JUL-03	3	14
3716	Terminal Sacrifice	23-JUL-03	3	15
3717	Terminal Sacrifice	23-JUL-03	3	15
3718	Terminal Sacrifice	23-JUL-03	3	15
3719	Terminal Sacrifice	23-JUL-03	3	15
3720	Terminal Sacrifice	23-JUL-03	3	15

APPENDIX B

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

	TYPE OF	DATE OF	WEEK OF	STUDY
NIMAL#	DEATH	DEATH	STUDY	DAY
4711	Terminal Sacrifice	22-JUL-03	3	14
4712	Terminal Sacrifice	22-JUL-03	3	14
4713	Terminal Sacrifice	22-JUL-03	3	14
4714	Terminal Sacrifice	22-JUL-03	3	14
4715	Terminal Sacrifice	22-JUL-03	3	14
4716	Terminal Sacrifice	23-JUL-03	3	15
4717	Terminal Sacrifice	23-JUL-03	3	15
4718	Terminal Sacrifice	23-JUL-03	3	15
4719	Terminal Sacrifice	23-JUL-03	3	15
4720	Terminal Sacrifice	23-JUL-03	3	15

Huntingdon Life Sciences	03-6143	Page 901
		Final Report
Indiv	ridual Clinical Observations	
	Preface	Appendix C

For summarization purposes, descriptive comments [i.e., location of scab(s) and sore(s), etc.] are not presented in this appendix. These data are contained in the study raw data if needed.

APPENDIX C

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

INDIVIDUAL CLINICAL OBSERVATIONS

MALES (GROUP 1 0 PPM		
ANIMAL#	DAY OBSERVATIONS STUD		
1211	WITHIN NORMAL LIMITS Terminal Sacrifice	PPPP p	
1212	WITHIN NORMAL LIMITS Terminal Sacrifice	P P P P	
1213	WITHIN NORMAL LIMITS Terminal Sacrifice	P P P P	
1214	WITHIN NORMAL LIMITS Terminal Sacrifice	P	
1215	WITHIN NORMAL LIMITS Terminal Sacrifice	P P P P P	
1216	WITHIN NORMAL LIMITS Terminal Sacrifice	P P P P	
1217	WITHIN NORMAL LIMITS Terminal Sacrifice	рррр	
1218	WITHIN NORMAL LIMITS Terminal Sacrifice DERMAL GENERAL: Ulceration - Cervical DERMAL GENERAL: Scab(s)	P P P P	
1219	WITHIN NORMAL LIMITS Terminal Sacrifice	P P P P P	
1220	WITHIN NORMAL LIMITS Terminal Sacrifice DERMAL GENERAL: Alopecia - Extremities/Snov	P P P P t 2 2	

APPENDIX C

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

INDIVIDUAL CLINICAL OBSERVATIONS

MALES (GROUP 2 90 PPM	INDIVIDORE		
ANIMAL#	OBSERVATIONS	DAY OF STUDY	- 111 707345	
2211	WITHIN NORMAL LIMITS Terminal Sacrifice		рррр р	
2212	WITHIN NORMAL LIMITS Terminal Sacrifice		PPPP	
2213	WITHIN NORMAL LIMITS Terminal Sacrifice		PPPP	
2214	WITHIN NORMAL LIMITS Terminal Sacrifice		P P P P	
2215	WITHIN NORMAL LÍMITS Terminal Sacrifice		P P P P	
2216	WITHIN NORMAL LIMITS Terminal Sacrifice		PPPP	
2217	WITHIN NORMAL LIMITS Terminal Sacrifice		P P P P	
2218	WITHIN NORMAL LIMITS Terminal Sacrifice		PPPP	
2219	WITHIN NORMAL LIMITS Terminal Sacrifice		P P P P P	
2220	WITHIN NORMAL LIMITS Terminal Sacrifice		P P P P	·

APPENDIX C

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

INDIVIDUAL CLINICAL OBSERVATIONS

MALES C	ROUP 3 900 PPM		
ANIMAL#	OBSERVATIONS	DAY OF STUDY	- 111 707345
3211	WITHIN NORMAL LIMITS Terminal Sacrifice		P P P P P
3212	WITHIN NORMAL LIMITS Terminal Sacrifice		P P P P
3213	WITHIN NORMAL LIMITS Terminal Sacrifice		PPPP P
3214	WITHIN NORMAL LIMITS Terminal Sacrifice		р р р р
3215	WITHIN NORMAL LIMITS Terminal Sacrifice		P P P P
3216	WITHIN NORMAL LIMITS Terminal Sacrifice OCULAR: Chromodacryorrhea - Unilatera	al	р р Р Р
3217	WITHIN NORMAL LIMITS Terminal Sacrifice		PPPP
3218	WITHIN NORMAL LIMITS Terminal Sacrifice		рррр Р
3219	WITHIN NORMAL LIMITS Terminal Sacrifice		p p p p
3220	WITHIN NORMAL LIMITS Terminal Sacrifice DBRMAL GENERAL: RED STAINS - SNOUT		P P P 1

APPENDIX C

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

INDIVIDUAL CLINICAL OBSERVATIONS

MALES (GROUP 4 9000 PPM	
		Y OF - · 1 1 1
ANIMAL#	OBSERVATIONS	TUDY 7 0 7 3 4 5
4211	WITHIN NORMAL LIMITS	b b b b
, 2, 2	Terminal Sacrifice	p
4212	WITHIN NORMAL LIMITS	рр
	Terminal Sacrifice DERMAL GENERAL: Alopecia - Extremities/	nout 2 2
4213	WITHIN NORMAL LIMITS	. PPPP
	Terminal Sacrifice	F
4214	WITHIN NORMAL LIMITS Terminal Sacrifice	PPPP
4215	WITHIN NORMAL LIMITS Terminal Sacrifice	PPPP P
4216	WITHIN NORMAL LIMITS .	рррр
	Terminal Sacrifice	P
4217	WITHIN NORMAL LIMITS	рррр .
	Terminal Sacrifice	±
4218	WITHIN NORMAL LIMITS	рррр
	Terminal Sacrifice	
4219	WITHIN NORMAL LIMITS	PPPP P
	Terminal Sacrifice	
4220	WITHIN NORMAL LIMITS Terminal Sacrifice	рррр
	Terminal Sacrifice	

APPENDIX C

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

INDIVIDUAL CLINICAL OBSERVATIONS

FEMALES C	GROUP 1 0 PPM	
ANIMAL#		OF - 111 UDY 707345
1711	WITHIN NORMAL LIMITS Terminal Sacrifice	р р р р р
1712	WITHIN NORMAL LIMITS Terminal Sacrifice	P P P P
1713	WITHIN NORMAL LIMITS Terminal Sacrifice	PPPP
1714	WITHIN NORMAL LIMITS Terminal Sacrifice	PPPP
1715	WITHIN NORMAL LIMITS Terminal Sacrifice DERMAL GENERAL: RED STAINS - SNOUT	P P P 1.1
1716	WITHIN NORMAL LIMITS Terminal Sacrifice	PPPP P
1717	WITHIN NORMAL LIMITS Terminal Sacrifice	PPPP
1718	WITHIN NORMAL LIMITS Terminal Sacrifice	P P P P
1719	WITHIN NORMAL LIMITS Terminal Sacrifice DERMAL GENERAL: Alopecia - Extremities/	P P P out 3 3
1720	WITHIN NORMAL LIMITS Terminal Sacrifice	рррр р

APPENDIX C

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

INDIVIDUAL CLINICAL OBSERVATIONS

	DAY OF	- 111 707345
ANIMAL#	OBSERVATIONS STUDY	7 0 7 3 4 5
2711	WITHIN NORMAL LIMITS	рр
	Terminal Sacrifice	p
	DERMAL GENERAL: Alopecia - General	2 2
2712	WITHIN NORMAL LIMITS	PPP
	Terminal Sacrifice	p
2713	WITHIN NORMAL LIMITS	PPPP
	Terminal Sacrifice	P
2714	WITHIN NORMAL LIMITS	P P P P
	Terminal Sacrifice	P
2715	WITHIN NORMAL LIMITS	рррр
	Terminal Sacrifice	р
2716	WITHIN NORMAL LIMITS	рррр
	Terminal Sacrifice	P
2717	WITHIN NORMAL LIMITS	PPPP
	Terminal Sacrifice	P
2718	WITHIN NORMAL LIMITS	рр
	Terminal Sacrifice	P
	DERMAL GENERAL: Alopecia - Extremities/Snout	2 2
2719	WITHIN NORMAL LIMITS	рррр
	Terminal Sacrifice	P
2720	WITHIN NORMAL LIMITS	PPPP
	Terminal Sacrifice	P

APPENDIX C

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

INDIVIDUAL CLINICAL OBSERVATIONS

FEMALES (GROUP 3 900 PPM	
ANIMAL#	DAY O OBSERVATIONS STUDY	F - 111 707345
3711	WITHIN NORMAL LIMITS Terminal Sacrifice	PPPP P
3712	WITHIN NORMAL LIMITS Terminal Sacrifice	P P P P P
3713	WITHIN NORMAL LIMITS Terminal Sacrifice	P P P P
3714	WITHIN NORMAL LIMITS Terminal Sacrifice DERMAL GENERAL: Alopecia - Extremities/Snout	P P P 2 2
3715	WITHIN NORMAL LIMITS Terminal Sacrifice DERMAL GENERAL: Scab(s) DERMAL GENERAL: Alopecia - Extremities/Snout	P P
3716	WITHIN NORMAL LIMITS Terminal Sacrifice DERMAL GENERAL: Alopecia - Extremities/Snout	P P P
3717	WITHIN NORMAL LIMITS Terminal Sacrifice	рррр Р
3718	WITHIN NORMAL LIMITS Terminal Sacrifice	P P P P
3719	WITHIN NORMAL LIMITS Terminal Sacrifice	рррр р

CODE: 1-SLIGHT 2-MODERATE 3-MARKED P-PRESENT

APPENDIX C

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

INDIVIDUAL CLINICAL OBSERVATIONS FEMALES GROUP 3 900 PPM DAY OF - 1 1 1 ANIMAL# OBSERVATIONS STUDY 7 0 7 3 4 5 3720 WITHIN NORMAL LIMITS Terminal Sacrifice P

APPENDIX C

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

INDIVIDUAL CLINICAL OBSERVATIONS

FEMALES (GROUP 4 9000 PPM			
			- 111	
ANIMAL#	OBSERVATIONS	STUDY	7 0 7 3 4 5	
			PPPP	
4711	WITHIN NORMAL LIMITS Terminal Sacrifice		РРРР	·
			PPPP	
4712	WITHIN NORMAL LIMITS Terminal Sacrifice		P	
4713	WITHIN NORMAL LIMITS		P P P P	
4/13	Terminal Sacrifice		P	
4714	WITHIN NORMAL LIMITS		PPPP	
	Terminal Sacrifice		P	
4715	WITHIN NORMAL LIMITS		P P	
	Terminal Sacrifice DERMAL GENERAL: Alopecia - Extremitie	es/Snout	P 2 2	
			PPPP	
4716	WITHIN NORMAL LIMITS Terminal Sacrifice		PPPP	
	WITHIN NORMAL LIMITS		PPPP	
4717	Terminal Sacrifice		P	
4718	WITHIN NORMAL LIMITS		PPPP	
. 4710	Terminal Sacrifice		P	
4719	WITHIN NORMAL LIMITS		PPPP	
	Terminal Sacrifice		P	
4720	WITHIN NORMAL LIMITS		P P P P	•
	Terminal Sacrifice		P	

APPENDIX D

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

MALES GRO	UP 1 0	PPM			INDIVIDUAD BODI WEIGHIS (GRAND)
	DAY	OF ST	UDY		
ANIMAL#	-7	0	7	13	
1211	214	283	310	335	
1212	211	282	325	362	
1213	201	264	299	320	
1214	205	273	307	338	
1215	214	288	320	350	
1216	223	295	325	349	
1217	199	262	295	313	
1218	203	269	293	311	
1219	197	260	301	316	
1220	208	276	310	337	
MEAN	208	275	308	333	
S.D.	8.2	11.8	11.8	17.6	
N	10	10	10	10	

APPENDIX D

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

MALES	GROUP 2	90	PPM		
		DAY	OF STU	DY	
ANIMAL#		-7	0	7	13
2211	2	 19	281	310	328
2212	2	06	276	308	331
2213	2	14	280	314	348
2214	1	86	254	292	314
2215	2	12	289	322	344
2216	2	05	271	308	331
2217	2	17	284	311	339
2218	2	00	268	302	328
2219	2	80	274	307	329
2220	2	02	266	297	318
MEAN	2	07	274	307	331
s.D.	9	. 7	10.1	8.7	10.7
N		10	10	10	10

APPENDIX D

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

MALES	GROUP 3	900) PPM		
		DAY	OF ST	UDY	
ANIMAL#		-7	0	7	13
3211		213	286	315	326
3212		212	279	307	333
3213		208	274	291	307
3214		206	268	300	335
3215		202	273	300	327
3216		218	290	324	342
3217		190	263	290	307
3218		199	272	320	356
3219		216	290	327	341
3220		205	274	311	334
MEAN		200	0.77	200	221
MEAN		207	277	308	331
S.D.		8.7	9.0	13.3	15.3
N		10	10	10	10

APPENDIX D

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

MALES	GROUP 4 90	000 PPM			
	DAY	OF ST	צסטי		
ANIMAL#	7	0	7	13	
4211	202	268	302	337	
4212	200	261	290	299	
4213	220	301	335	361	
4214	209	280	316	342	
4215	213	287	336	364	
4216	198	262	300	324	
4217	209	276	316	340	
4218	218	286	322	351	
4219	206	267	286	298	
4220	204	273	316	340	
MEAN	208	276	312	336	
S.D.	7.3	12.8	17.4	22.8	
N	10	10	10	10	

APPENDIX D

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

FEMALES	GROUP 1 0	PPM			
	DAY	OF ST	UDY		
ANIMAL#	-7	0	7	13	
1711	180	207	234	241	
1712	167	195	216	229	
1713	178	214	232	243	
1714	. 165	196	202	210	
1715	174	218	228	234	
1716	155	184	192	198	
1717	171	200	210	226	
1718	180	207	201	235	
1719	176	212	227	241	
1720	163	197	216	229	
MEAN	171	203	216	228	
S.D.	8.2	10.5	14.5	14.6	
N	10	10	10	10	

APPENDIX D

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

						21.02.12.01.12 top1 (.210110)
FEMALES	GROUP 2	90	PPM			
		DAY	OF STU	JDY		
ANIMAL#		-7	0	7	13	
2711		164	194	208	226	
2712	1	161	188	204	208	
2713		178	199	213	222	
2714		169	199	212	230	
2715		161	199	218	231	
2716		183	213	232	248	·
2717		168	183	212	223	
2718	1	175	201	211	218	
2719	ı	174	202	225	237	
2720	1	179	197	206	225	
MEAN		171	198	214	227	
S.D.		7.8	8.1	8.7	10.8	
N		10	10	10	10	

APPENDIX D

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

FEMALES	GROUP 3	900) PPM			INDIVIDUAL BODI WEIGHIS (GRANG)
		DAY	OF ST	JDY		
ANIMAL#		-7	0	7	13	
3711		179	221	227	236	
3712		166	192	210	219	
3713		169	190	209	221	
3714		161	189	200	220	
3715		168	195	216	224	
3716		177	215	231	252	
3717		178	211	223	234	
3718		173	199	220	231	
3719		162	187	203	215	
3720		185	206	210	232	
MEAN		172	200	215	228	
S.D.		7.9	12.1	10.3	10.9	
N		10	10	10	10	

APPENDIX D

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

FEMALES	GROUP 4 90	000 PPM		. 	INDIVIDUAL BOST WITCHIO
	DA	OF ST	UDY		
ANIMAL#	7	0	7	13	
4711	161	188	200	212	
4712	184	216	231	238	
4713	179	209	218	231	
4714	173	198	214	235	
4715	172	185	212	228	
4716	167	195	215	227	
4717	166	189	206	220	
4718	177	203	218	235	
4719	178	209	219	224	
4720	161	189	202	209	
MEAN	172	198	213	226	
S.D.	7.9	10.7	9.3	9.8	
N	10	10	10	10	

APPENDIX E

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

MALES GROU		PPM	
		OF STUDY	
ANIMAL#	0-7	0-13	
1211	27	52	
1212	43	80	
1213	35	56	
1214	34	65	
1215	31	62	
1216	30	54	
1217	33	51	
1218	24	42	
1219	41	56	
1220	34	60	
MEAN	33	58	
S.D.	5.9	10.2	
N	10	10	

APPENDIX E

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

	GROUP 2		PPM	
			OF STUDY	
ANIMAL#			0-13	
2211		29	47	
2212		32	55	
2213		34	69	
2214		38	60	
2215		33	55	
2216		37	60	
2217		27	56	
2218		34	60	
2219		33	55	
2220		31	52	
MEAN		33	57	
S.D.		3.3	5.7	
N		10	10	

APPENDIX E

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

	GROUP 3	000 PPM	
	DAY	OF STUI	Υ
ANIMAL#	0-1	7 0-13	
3211	29	41	
3212	28	55	
3213	17		
3214	32		
3215	27		
3216	35		
3217	27		
3218	4.6		
3219	37		
3220	37	60	
MEAN	32	2 54	
S.D.	8.2		
N	10	10	

APPENDIX E

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

	GROUP 4		00 PPM		Control From Middle Control				
			OF STUDY						
ANIMAL#		0-7	0-13						
4211		34	69		·				•••••
4212		29	39						
4213		34	60						
4214		36	62						
4215		49	77						
4216		38	62						
4217		40	64						
4218		36	65						
4219		19	31						
4220		43	67						
MEAN		36	59						
3.D.		8.2	14.0			•		•	
N .		10	10						

APPENDIX E

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

FEMALES	GROUP 1	0) PPM					
		DAY	OF STUDY					
ANIMAL#		0-7	0-13					
1711		28	35	,				
1712		21	34	•				
1713		18	. 29					
1714		6	14					
1715		10	16					
1716		8	14					
1717		10	26					
1718		-6	28					
1719		15	29					
1720		19	31					
MEAN		13	25					
S.D.		9.4	8.1					
N		10	10					

APPENDIX E

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

FEMALES	GROUP 2 90	PPM	
ANIMAL#	DAY 0-7	OF STUDY	·
2711	14	32	
2712	16	20	
2713	14	23	·
2714	13	31	
2715	18	32	
2716	19	35	
2717	29	40	
2718	9	16	
2719	23	35	
2720	8	28	
MEAN	16	29	
S.D.	6.2	7.4	
N	10	10	

APPENDIX E

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

	עמת	OF STUDY	
MIMAL#	0-7	0-13	
3711	 5	15	
3712	18	27	
3713	19	31	
3714	11	32	
3715	22	30	•
3716	16	37	
3717	12	23	
3718	21	32	
3719	15	28	
3720	4	26	
EAN	14	28	
D.	6.0	6.1	
N	10	10	

APPENDIX E

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

	DAY	OF STUDY	
ANIMAL#		0-13	
4711	11	24	
4712	14	21	
4713	9	23	
4714	16	37	
4715	28	43	
4716	20	32	
4717	16	30	
4718	16	32	
4719	10	15	
4720	13	20	
1EAN	15	28	
S.D.	5.4	8.6	
N	10	10	

APPENDIX F

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

INDIVIDUAL FEED CONSUMPTION VALUES (GRAMS/KG/DAY)

	DAY	OF STU	IDY
ANIMAL#	0	7	13
1211	105	80	68
1212	106	88	77
1213	105	86	73
1214	104	81	73
1215	102	87	72
1216	104	81	66
1217	114	96	79
1218	99	SF	71
1219	107	87	74
1220	102	84	72
MEAN	105	86	72
S.D.	3.9	4.9	3.7
N	10	9	10

SF=Spilled Feeder

APPENDIX F

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

INDIVIDUAL FEED CONSUMPTION VALUES (GRAMS/KG/DAY)

MALES	GROUP 2	90	PPM		
		DAY	OF STU	DY.	
ANIMAL#		0	7	13	
2211		101	80	68	
2212		108	96	74	•
2213		96	78	72	
2214		110	85	71	
2215		107	85	72	
2216		94	79	70	
2217		103	81	73	
2218		SF	85	SF	
2219		104	86	72	
2220		107	81	74	
MEAN		103	84	72	
S.D.		5.5	5.4	1.9	
И		9	10	9	

SF=Spilled Feeder

APPENDIX F

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

INDIVIDUAL FEED CONSUMPTION VALUES (GRAMS/KG/DAY)

MALES	GROUP 3	900	PPM		
		DAY	OF STU	DY	
ANIMAL#		0	7	13	
3211		98	77	61	
3212		98	77	65	
3213		102	85	68	
3214		103	79	73	
3215		105	81	73	
3216		101	85	67	
3217		112	SF	82	
3218		112	91	79	
3219		102	SF	SF	
3220		106	87	72	
MEAN		104	83	71	
S.D.	•	4.8	4.9	6.8	
И		10	8	9	

SF=Spilled Feeder

APPENDIX F

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

INDIVIDUAL FEED CONSUMPTION VALUES (GRAMS/KG/DAY)

MALES	GROUP 4 90	00 PPM		
	DAY	OF ST	UDY	
ANIMAL#	0	7	13	
4211	106	85	78	*************************************
4212	106	84	68	
4213	108	84	76	
4214	103	84	72	
4215	108	89	76	
4216	107	85	71	
4217	104	SF	74	
4218	100	79	70	
4219	102	82	70	
4220	106	88	76	
MEAN	105	85	73	
S.D.	2.7	2.9	3.4	
N	10	9	10	

SF=Spilled Feeder

APPENDIX F

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

	DAY	OF	STU
ANIMAL#	0	7	
1711	103	91	89
1712	97	91	93
1713	83	67	66
1714	92	82	82
1715	100	78	77
1716	103	87	82
1717	. 93	81	83
1718	101	86	92
1719	105	94	88
1720	100	85	83
MEAN	98	84	84
S.D.	6.7	7.7	8.1
N	10	10	10

APPENDIX F

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

FEMALES	GROUP 2	90	PPM		INDIVIDUAL FEED CONSUMPTION VALUES (GRAMS/ NS/ DAI)
		DAY	OF STU	DY	·
ANIMAL#		0	7	13	
2711		99	83	82	
2712		95	82	79	
2713		94	82	80	
2714		94	88	83	
2715		105	84	82	
2716		95	83	81	
2717		89	88	85	
2718		96	81	80	
2719		100	94	83	
2720		92	82	80	
MEAN		96	85	82	
S.D.		4.6	4.0	1.7	
N		10	10	10	

APPENDIX F

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

FEMALES	GROUP 3	900	PPM		INDIVIDUAL TEED CONSTITUTION VINDELD (CAREE) AND EAST
		DAY	OF STU	IDY	
ANIMAL#		0	7	13	
3711		106	77	78	
3712		91	82	78	·
3713		89	85	74	
3714		98	83	83	
3715		106	91	83	
3716		102	90	87	
3717		97	77	76	
3718		93	83	78	
3719		99	88	78	
3720		89	79	82	
MEAN		97	83	80	
S.D.		6.5	4.9	3.7	
N		10	10	10	

APPENDIX F

BUTANE: A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

FEMALES G	ROUP 4 900	O PPM		
	DAY	OF STU	JDY	
ANIMAL#	0	7	13	
4711	95	81	81	
4712	85	74	74	
4713	95	79	78	
4714	97	85	83	
4715	86	87	78	
4716	96	84	81	
4717	101	84	85	
4718	102	79	82	
4719	105	83	81	
4720	101	88	88	
MEAN	96	83	81	
S.D.	6.7	4.2	3.8	
N	10	10	10	

Individual Organ Weights	
Preface	Appendix G

Table of Contents

Absolute Organ Weights	.936
% Organ to Body Weight Ratios	
% Organ to Brain Weight Ratios	
70 Organ to Brain Wolght (tatoo	

Key to Abbreviations:

g = Grams wt. = Weight observ. = Observed

Corresponding exposure levels for each group were as follows:

Group 1 - 0 ppm Group 2 - 90 ppm Group 3 - 900 ppm Group 4 - 9000 ppm

Summary statistics for absolute organ weights (g) Study number: 036143

Page 936 Printed: 01-Feb-06 Page: 1

Terminal Sacrifice	Downing!		Brain		Heart		Liver
Animal Group/ No/sex Subgroup B	Terminal	Adrenal Glands	Brazii	Epididymides	110020	Kidneys	
NO/Sex Subgroup B	ody wt. (g)	Adienal Glands					
			Male	Animals			
1211/M 1/1	315.2	0.0659	2.3524	0.8831	1.2113	3.1219	11.2229
1212/M 1/1	340.9	0.0779	2.1161	0.8795	1.2700	3.3570	11.6739
1213/M 1/1	299.6	0.0790	2.1910	0.9257	1.2608	3.4802	11.5151
1214/M 1/1	318.0	0.0775	2.1084	0.9665	1.2132	3.3066	12.2463
1215/M 1/1	319.6	0.0697	1.9983	0.9914	1.3306	3.5357	11.8423
1216/M 1/1	327.1	0.0495	2.1709	0.9101	1.2702	3.3033	12.0146
1217/M 1/1	284.9	0.0787	2.0274	0.8899	1.1873	3.3937	11.4718
1218/M 1/1	284.0	0.0709	2.0245	0.9167	1.2354	2.9964	9.2720
1219/M 1/1	295.2	0.0662	2.2644	0.9488	1.2634	3.4867	10.4590
1220/M 1/1	306.7	0.0661	2.1123	0.7430	1.3537	3.6502	10.9466
Mean:	309.1	0.0701	2.1366	0.9055	1.2596	3.3632	11.2665
Standard deviation:	18.5	0.0091	0.1118	0.0678	0.0521	0.1948	0.8728
Number of observ. :	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2211/M 2/1	319.4	0.0646	2.2967	0.8654	1.1422	4.0617	10.9283
2212/M 2/1	309.7	0.0625	2.1840	1.0840	1.3245	3.7540	13.1403
2213/M 2/1	317.9	0.0641	2.2234	0.9197	1.1599	3.3920	10.8492
2214/M 2/1	302.6	0.0610	2.0995	0.8533	1.1801	3.3302	11.1593
2215/M 2/1	320.0	0.0608	2.1256	0.7896	1.3772	3.4737	12.6763
2216/M 2/1	305.6	0.0819	2.1377	0.9519	1.2177	3.8766	11.2297
2217/M 2/1	313.8	0.0654	2.0576	0.9671	1.2600	3.5812	10.6859
2218/M 2/1	303.3	0.0733	2.0497	0.9585	1.3226	3.0247	10.5742
2219/M 2/1	309.7	0.0700	2.2511	0.8697	1.3191	3.5155	10.8418
2220/M 2/1	297.0	0.0656	2.0314	0.9075	1.1865	3.2210	10.7727
Mean:	309.9	0.0669	2.1457	0.9167	1.2490	3.5231	11.2858
Standard deviation:	7.8	0.0065	0.0907	0.0807	0.0827	0.3106	0.8842
Number of observ. :	(10)	(10)	(10)	(10)	(10)	(10)	(10)
3211/M 3/1	309.9	0.0735	2.0526	0.8468	1.0490	3.4371	11.7409
3212/M 3/1	302.1	0.0782	2.1076	1.0421	1.0998	3.1994	10.0777
3213/M 3/1	281.9	0.0637	2.0772	0.8616	1.1181	3.0949	11.6085
3214/M 3/1	319.9	0.0680	2.0819	0.9312	1.3690	3.4997	11.7516
3215/M 3/1	305.6	0.0552	2.1419	0.9204	1.3282	3.4571	10.7455
3216/M 3/1	320.3	0.0783	2.1902	0.9235	1.2178	3.1060	11.6090
3217/M 3/1	285.0	0.0627	2.0794	1.0082	1.2281	4.1334	10.1027
3218/M 3/1	332.7	0.0504	2.1039	0.8802	1.2351	3.2266	11.5125
3219/M 3/1	319.2	0.0645	2.2961	0.9598	1.3259	3.5222	11.3351
3220/M 3/1	310.1	0.0735	2.0265	0.7834	1.3156	3.8557	10.7784
Mean:	308.7	0.0668	2.1157	0.9157	1.2287	3.4532	11.1262
Standard deviation:	15.9	0.0094	0.0781	0.0769	0.1095	0.3328	0.6532
Number of observ. :	(10)	(10)	(10)	(10)	(10)	(10)	(10)
4211/M 4/1	313.8	0.0670	2.1305	0.6847	1.2013	3.4865	13.7471
4212/M 4/1	272.6	0.0714	2.1315	0.9163	1.0588	3.1494	14.3715
4213/M 4/1	333.2	0.0673	2.1488	1.0888	1.4134	4.0238	11.9388

Summary statistics for absolute organ weights (g) Study number: 036143

Page 937 Printed: 01-Feb-06 Page: 2

Animal	Group/	Terminal		Brain		Heart		Liver
	No/sex Subgroup Body wt.		Adrenal Glands	Epididymides				
4214/	 M 4/1	319.6	0.0781	2.2367	1.0265	1.2462	3.5106	11.4703
4215/	•	339.7	0.0819	1.9393	0.8634	1.2140	3.2473	12.6075
4216/	•	294.4	0.0787	2.0552	0.8380	1.1840	3.2364	10.0543
4217/		315.6	0.0747	1.9791	1.0385	1.2512	3.0148	10.9185
4218/	· .	321.9	0.0572	2.1934	0.9513	1.2521	3.6623	11.0562
4219/	· · · · · · · · · · · · · · · · · · ·	273.2	0.0590	2.1335	0.9201	1.1280	3.3904	9.7437
4220/	•	319.1	0.0703	2.1981	0.8528	1.4597	4.0735	13.3654
4220/	Mean:	310.3	0.0706	2.1146	0.9180	1.2409	3.4795	11.9273
Standard .	deviation:	23.0	0.0082	0.0959	0.1177	0.1199	0.3542	1.5663
• • • • • • • • • • • • • • • • • • • •	observ. :	(10)	(10)	(10)	(10)	(10)	(10)	(10)

Summary statistics for absolute organ weights (g) Study number: 036143

Page 938
Printed: 01-Feb-06
Page: 3
Version 4.2.2

Terminal Sacrifice		Ditui	tary gland	· · · · · · · · · · · · · · · · · · ·	Spleen		Thymus
· · · · · · · · · · · · · · · · · · ·	Terminal	Lungs		inal vesicles	opice	Testes	
No/sex Subgroup Bo	αγ wc. (g)	Luigs					
			Male	Animals			
1211/M 1/1	315.2	2.1416	0.0085	1.1188	0.7923	3.1825	0.5652
1212/M 1/1	340.9	1.6885	0.0081	0.9070	0.6460	3.1699	0.6183
1213/M 1/1	299.6	1.6849	0.0131	1.2821	0.7165	3.4404	0.4756
1214/M 1/1	318.0	1.7039	0.0110	1.0169	0.7688	3.3235	0.5702
1215/M 1/1	319.6	1.7760	0.0098	1.2273	0.9145	3.2119	0.5488
1216/M 1/1	327.1	1.9340	0.0070	1.0082	0.8558	3.5390	0.8313
1217/M 1/1	284.9	2.0982	0.0112	0.7250	0.5998	3.5353	0.4740
1218/M 1/1	284.0	1.7591	0.0112	0.8421	0.7317	3.2329	0.3408
1219/M 1/1	295.2	1.8181	0.0130	1.1282	0.5717	3.0258	0.4627
1220/M 1/1	306.7	2.3251	0.0102	1.2716	0.7804	2.7185	0.6296
Mean:	309.1	1.8929	0.0103	1.0527	0.7378	3.2380	0.5517
Standard deviation:	18.5	0.2237	0.0020	0.1878	0.1088	0.2473	0.1306
Number of observ. :	(10)	(10)	(10)	(10)	. (10)	(10)	(10)
2211/M 2/1	319.4	1.9118	0.0106	1.2358	0.6039	3.2996	0.4855
2211/M 2/1 2212/M 2/1	309.7	1.8854	0.0094	0.9328	0.7649	3.4350	0.8041
2212/M 2/1 2213/M 2/1	317.9	1.7445	0.0072	0.7420	0.5152	3.1865	0.5974
The state of the s	302.6	2.0464	0.0109	1.2701	0.6481	3.1290	0.7226
· · · · · · · · · · · · · · · · · · ·	320.0	2.0351	0.0091	1.3044	0.7489	3.3123	1.0754
• • • • • • • • • • • • • • • • • • • •	305.6	1.9782	0.0124	0.9126	0.7674	3.2673	0.5566
	313.8	1.9268	0.0076	0.8635	0.7008	3.3272	0.8079
· · · · · · · · · · · · · · · · · · ·	303.3	1.6726	0.0118	0.9278	0.8232	3.4983	0.7194
•	309.7	1.9802	0.0117	0.6319	0.6354	3.1637	0.4979
	297.0	2.0065	0.0109	1.3847	0.6467	3.2881	0.6835
• • • •	309.9	1.9188	0.0102	1.0206	0.6855	3.2907	0.6950
Mean:	7.8	0.1234	0.0018	0.2589	0.0927	0.1152	0.1771
Standard deviation:		(10)	(10)	(10)	(10)	(10)	(10)
Number of observ. :	(10)	(10)	(10)	(10)	(20)	, ,	
3211/M 3/1	309.9	1.6186	0.0110	0.8585	0.6142	3.2044	0.5221
3212/M 3/1	302.1	1.7778	0.0100	0.9698	0.5390	3.4866	0.4081
3213/M 3/1	281.9	1.9818	0.0093	0.9675	0.6736	3.2393	0.5490
3214/M 3/1	319.9	2.1316	0.0093	1.1390	0.8862	3.2970	0.7738
3215/M 3/1	305.6	1.9146	0.0109	1.1763	0.6859	3.0687	0.5665
3216/M 3/1	320.3	2.0573	0.0082	0.7355	0.8131	3.5781	0.6960
3217/M 3/1	285.0	1.7030	0.0074	0.9485	0.8876	3.5555	0.3934
3218/M 3/1	332.7	2.1413	0.0094	0.9440	0.5532	3.0097	0.5021
3219/M 3/1	319.2	1.9011	0.0122	1.3034	0.8291	3.1313	0.4327
3220/M 3/1	310.1	2.2869	0.0084	0.6585	0.6847	2.8475	0.6390
Mean:	308.7	1.9514	0.0096	0.9701	0.7167	3.2418	0.5483
Standard deviation:	15.9	0.2107	0.0015	0.1966	0.1302	0.2421	0.1252
Number of observ. :	(10)	(10)	(10)	(10)	(10)	(10)	(10)
4211/M 4/1	313.8	1.8824	0.0146	1.1858	0.7955	2.4943	0.4492
4211/M 4/1 4212/M 4/1	272.6	1.6222	0.0077	0.7730	1.2778	3.1529	0.3804
4212/M 4/1 4213/M 4/1	333.2	3.2118E	0.0119	1.0016	0.7877	3.5094	0.6081
,, -							

Summary statistics for absolute organ weights (g) Study number: 036143

Page 939 Printed: 01-Feb-06 Page: 4

Animal Group/ T	erminal	Pitui	tary gland		Spleen		Thymus
No/sex Subgroup Bod	y wt. (g)	Lungs	Seminal vesicles			Testes	
4214/M 4/1	319.6	1.7943	0.0128	1.2707	0.6609	3.3324	0.5207
4215/M 4/1	339.7	2.2244	0.0130	0.7684	0.6981	3.0630	0.5664
4216/M 4/1	294.4	1.9059	0.0155	1.4111	0.5094	3.1164	0.5134
4217/M 4/1	315.6	2.0161	0.0118	1.1163	0.6939	3.1199	0.6882
4218/M 4/1	321.9	2.0086	0.0126	1.1662	0.8606	3.5808	0.4918
4219/M 4/1	273.2	1.9163	0.0094	1.1813	0.4996	2.9928	0.3218
4220/M 4/1	319.1	2.0964	0.0132	1.3858	0.6392	3.3889	0,5527
Mean:	310.3	1.9407	0.0123	1.1260	0.7423	3.1751	0.5093
Standard deviation:	23.0	0.1743	0.0023	0.2226	0.2212	0.3097	0.1068
Number of observ. :	(10)	(9)	(10)	(10)	(10)	(10)	(10)

Summary statistics for absolute organ weights (g) Study number: 036143

Page 940
Printed: 01-Feb-06
Page: 1

Terminal Sacrifice Animal Group/	Terminal		Brain		Kidneys		Lungs
No/sex Subgroup B		Adrenal Glands		Heart		Liver	
			Female	Animal		0.7000	1 0767
1711/F 1/1	228.7	0.0710	2.2952	1.0707	2.7404	8.7900	1.8767
1712/F 1/1	211.5	0.0802	2.0181	0.8404	2.5833	8.5814	1.5302
1713/F 1/1	231.0	0.0817	1.9719	0.9851	2.3488	8.4595	1.5889
1714/F 1/1	196.5	0.0729	2.0141	0.8293	2.2710	7.7408	1.8199
1715/F 1/1	218.1	0.0772	1.9660	0.9831	2.4026	8.4867	1.7021
1716/F 1/1	186.2	0.0790	1.9645	0.8545	1.9016	7.4343	1.4163
1717/F 1/1	213.5	0.0699	2.0381	0.8666	2.3625	7.5544	2.2704
1718/F 1/1	207.5	0.1027	1.9692	1.0033	2.8171	9.2688	2.0025
1719/F 1/1	220.5	0.1040	2.0426	0.9450	2.7072	10.7876	1.7977
1720/F 1/1	212.5	0.0849	2.1461	0.9289	2.4812	9.1624	1.8404
Mean:	212.6	0.0824	2.0426	0.9307	2.4616	8.6266	1.7845
Standard deviation:	13.6	0.0120	0.1045	0.0811	0.2699	0.9889	0.2454
Number of observ. :	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2711/F 2/1	211.6	0.0634	2.1453	1.0802	2.7516	8.2688	1.7156
2712/F 2/1	200.0	0.0784	1.8888	0.7568	2.2165	7.1844	1.5128
2713/F 2/1	207.3	0.0729	2.1966	0.8930	2.2497	8.0699	1.8456
2714/F 2/1	212.1	0.0668	2.0846	0.8701	2.2870	9.3651	1.5911
2715/F 2/1	222.1	0.0793	2.0129	0.9855	2.4415	9.3753	1.9332
2716/F 2/1	227.1	0.0880	1.9999	0.8584	2.3765	7.8176	1.8659
2717/F 2/1	209.5	0.0699	1.9975	0.9666	2.5272	7.9415	2.0897
2718/F 2/1	205.5	0.0748	2.0074	0.7788	2.0585	7.0505	1.7641
2719/F 2/1	217.1	0.0867	2.0918	0.9439	2.4318	9.0727	1.4948
2720/F 2/1	207.2	0.0805	2.0646	1.0592	2.6368	9.6121	1.7417
Mean:	212.0	0.0761	2.0489	0.9193	2.3977	8.3758	1.7555
Standard deviation:	8.1	0.0081	0.0870	0.1083	0.2068	0.9293	0.1884
Number of observ. :	(10)	(10)	(10)	(10)	(10)	(10)	(10)
Number of Observ	(10)	(20)	(20)	,,			
3711/F 3/1	219.7	0.0678	2.1991	0.9888	2.3880	8.2227	1.5182
3712/F 3/1	204.6	0.0763	1.9793	0.8637	2.3346	7.5475	1.4740
3713/F 3/1	197.4	0.0740	2.0800	0.8545	2.3406	7.0501	1.4607
3714/F 3/1	204.2	0.0683	1.9917	0.8267	1.9076	6.7107	1.8785
3715/F 3/1	208.2	0.0682	1.9919	0.9060	2.5042	7.6715	1.4838
3716/F 3/1	228.9	0.0916	1.8765	0.9538	2.5986	8.7607	1.6451
3717/F 3/1	219.1	0.0726	2.0384	0.9400	2.3063	7.9016	2.0553
3718/F 3/1	219.1	0.0810	2.1864	1.0004	2.6599	9.3878	2.1966
3719/F 3/1	191.1	0.0559	1.9608	0.9079	2.2276	8.6460	1.4942
3720/F 3/1	210.4	0.0898	2.0712	0.9025	2.0556	7.8037	1.8707
Mean:	210.3	0.0746	2.0375	0.9144	2.3323	7.9702	1.7077
Standard deviation:	11.5	0.0108	0.1003	0.0570	0.2308	0.8089	0.2722
Number of observ. :	(10)	(10)	(10)	(10)	(10)	(10)	(10)
4711/F 4/1	196.1	0.0820	1.8995	0.8924	2.1683	7.7800	2.1989
4712/F 4/1	219.0	0.0970	2.0564	0.9584	2.7608	8.8181	1.5529
4713/F 4/1	209.1	0.0800	2.0926	0.9353	2.2320	7.6531	1.6539
4/13/1 4/1	203.1	0.0000	2.0220				

Huntingdon Life Sciences Princeton Research Center East Millstone, New Jersey

Summary statistics for absolute organ weights (g) Study number: 036143

Page 941
Printed: 01-Feb-06
Page: 2

Animal Group/	Terminal		Brain		Kidneys		Lungs
No/sex Subgroup Bo	dy wt. (g)	Adrenal Glands		Heart		Liver	
4714/F 4/1	215.2	0.0745	2.0910	0.9015	2.4639	8.3588	1.5114
4715/F 4/1	208.3	0.0614	2.0838	0.8915	2.3180	8.4617	1.5927
4716/F 4/1	210.3	0.0969	1.9377	0.7647	2.0682	7.5866	1.5103
4717/F 4/1	206.3	0.0809	2.0110	0.8915	2.4104	7.7436	2.3782
4718/F 4/1	214.7	0.0964	2.0402	0.9395	2.5003	9.6128	1.8394
4719/F 4/1	212.7	0.0668	1.9062	0.8839	2.3224	8.0363	2.0997
4720/F 4/1	196.5	0.0802	2.1143	0.9262	2.4669	9.5193	1.5109
Mean:	208.8	0.0816	2.0233	0.8985	2.3711	8.3570	1.7848
andard deviation:	7.6	0.0124	0.0811	0.0534	0.1959	0.7493	0.3264
mber of observ. :	(10)	(10)	(10)	(10)	(10)	(10)	(10)

Summary statistics for absolute organ weights (g) Study number: 036143

Page 942
Printed: 01-Feb-06
Page: 3
Version 4.2.2

	erminal		itary gland		Thymus		
No/sex Subgroup Bod	ly wt. (g)	Ovaries		Spleen		Uterus	
			Female	Animal	s		
1711/F 1/1	228.7	0.0973	0.0131	0.5178	0.4980	0.5269	
1712/F 1/1	211.5	0.1470	0.0130	0.4452	0.6166	0.6972	
1713/F 1/1	231.0	0.1340	0.0138	0.5554	0.3843	0.4940	
1714/F 1/1	196.5	0.0915	0.0177	0.4323	0.4344	0.5441	
1715/F 1/1	218.1	0.1216	0.0159	0.4882	0.5991	0.5936	
1716/F 1/1	186.2	0.1027	0.0119	0.4980	0.5182	0.4749	
1717/F 1/1	213.5	0.1296	0.0154	0.4914	0.5237	0.5105	
1717/F 1/1 1718/F 1/1	207.5	0.1444	0.0130	0.3809	0.4200	0.6537	
1719/F 1/1	220.5	0.1231	0.0148	0.5115	0.6785	0.5358	
1719/F 1/1 1720/F 1/1	212.5	0.1075	0.0167	0.6202	0.4781	0.5563	
Mean:	212.6	0.1199	0.0145	0.4941	0.5151	0.5587	
Standard deviation:	13.6	0.0195	0.0019	0.0663	0.0934	0.0705	
Number of observ. :	(10)	(10)	(10)	(10)	(10)	(10)	
Number of observ. :	(10)	(10)	(10)	(10)	(10)	(20)	
2711/F 2/1	211.6	0.1295	0.0147	0.4590	0.4727	0.4922	
2711/F 2/1 2712/F 2/1	200.0	0.1295	0.0153	0.4368	0.4540	0.4704	
•	200.0	0.1148	0.0133	0.7112	0.5707	0.4916	
· · · · · · · · · · · · · · · · · · ·	212.1	0.1148	0.0111	0.6946	0.6773	0.6591	
	222.1	0.1048	0.0111	0.5900	0.5797	0.4281	
2715/F 2/1			0.0125	0.5760	0.6471	0.5485	
2716/F 2/1	227.1	0.1312 0.1386	0.0123	0.5591	0.4668	0.6060	
2717/F 2/1	209.5	0.1388	0.0122	0.4991	0.5347	0.4578	
2718/F 2/1	205.5	0.1207	0.0138	0.5190	0.7334	0.9903	
2719/F 2/1	217.1	0.1151	0.0147	0.4668	0.4603	0.9431	
2720/F 2/1	207.2			0.5512	0.5597	0.6087	
Mean:	212.0	0.1183	0.0133		0.1000	0.2015	
Standard deviation:	8.1	0.0117	0.0015	0.0948	(10)	(10)	
Number of observ. :	(10)	(10)	(10)	(10)	(10)	(10)	
3711/F 3/1	219.7	0.0996	0.0164	0.6182	0.4238	0.6116	
3712/F 3/1	204.6	0.0901	0.0164	0.4272	0.5204	0.6460	
3713/F 3/1	197.4	0.1069	0.0112	0.3780	0.5105	0.4786	
3714/F 3/1	204.2	0.0923	0.0113	0.4750	0.4612	1.1381	
3715/F 3/1	208.2	0.1273	0.0112	0.6026	0.6912	0.7001	
3716/F 3/1	228.9	0.1413	0.0145	0.5450	0.5065	0.6162	
3717/F 3/1	219.1	0.1143	0.0156	0.5038	0.4595	0.6693	
3718/F 3/1	219.1	0.1073	0.0153	0.5037	0.4023	0.6758	
3719/F 3/1	191.1	0.1107	0.0126	0.5960	0.4277	0.5617	
3720/F 3/1	210.4	0.0978	0.0139	0.5270	0.4501	0.5700	
Mean:	210.3	0.1088	0.0138	0.5177	0.4853	0.6667	
Standard deviation:	11.5	0.0159	0.0021	0.0776	0.0825	0.1780	
Number of observ. :	(10)	(10)	(10)	(10)	(10)	(10)	
4711/F 4/1	196.1	0.1191	0.0163	0.4554	0.5053	0.4900	
4712/F 4/1	219.0	0.1173	0.0149	0.5201	0.4160	0.6900	
-1-4/5	209.1	0.1116	0.0171	0.6164	0.3866	0.6327	

Summary statistics for absolute organ weights (g) Study number: 036143

Page 943
Printed: 01-Feb-06
Page: 4
Version 4.2.2

Animal G	roup/	Terminal	Pitui	tary gland		Thymus		
	• .	ody wt. (g)	Ovaries		Spleen		Uterus	
4714/F	4/1	215.2	0.0771	0.0160	0.4315	0.4515	0.5880	
4715/F	4/1	208.3	0.0799	0.0142	0.5085	0.4451	0.4796	
4716/F	4/1	210.3	0.1325	0.0128	0.4661	0.3635	0.4513	
4717/F	4/1	206.3	0.1240	0.0130	0.5301	0.5144	0.4819	
4718/F	4/1	214.7	0.1369	0.0110	0.6136	0.4849	0.5640	
4719/F	4/1	212.7	0.1253	0.0121	0.5895	0.4338	0.5304	
4720/F	4/1	196.5	0.1305	0.0142	0.6304	0.5024	0.5928	
M	ean:	208.8	0.1154	0.0142	0.5362	0.4504	0.5501	
Standard devi	iation:	7.6	0.0209	0.0020	0.0727	0.0518	0.0769	
Number of obs	serv. :	(10)	(10)	(10)	(10)	(10)	(10)	

Summary Statistics for % Organ to Body Weight Study number: 036143

Page: 1

Printed: 01-Feb-06 Version 4.2.2

Page 944

Terminal Sacrifice Animal Group/	Terminal		Brain		Heart		Liver
No/sex Subgroup Bo		Adrenal Glands	DIGI	Epididymides		Kidneys	
NO/Sex Subgroup Bo	ay wc. (g)					.	
			Male	Animals			
1211/M 1/1	315.2	0.0209	0.7463	0.2802	0.3843	0.9905	3.5606
1212/M 1/1	340.9	0.0229	0.6207	0.2580	0.3725	0.9847	3.4244
1213/M 1/1	299.6	0.0264	0.7313	0.3090	0.4208	1.1616	3.8435
1214/M 1/1	318.0	0.0244	0.6630	0.3039	0.3815	1.0398	3.8510
1215/M 1/1	319.6	0.0218	0.6253	0.3102	0.4163	1.1063	3.7054
1216/M 1/1	327.1	0.0151	0.6637	0.2782	0.3883	1.0099	3.6731
1217/M 1/1	284.9	0.0276	0.7116	0.3124	0.4167	1.1912	4.0266
1218/M 1/1	284.0	0.0250	0.7129	0.3228	0.4350	1.0551	3.2648
1219/M 1/1	295.2	0.0224	0.7671	0.3214	0.4280	1.1811	3.5430
1220/M 1/1	306.7	0.0216	0.6887	0.2423	0.4414	1.1902	3.5692
Mean:	309.1	0.0228	0.6931	0.2938	0.4085	1.0910	3.6462
Standard deviation:	18.5	0.0035	0.0496	0.0277	0.0246	0.0851	0.2232
Number of observ. :	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2211/M 2/1	319.4	0.0202	0.7191	0.2709	0.3576	1.2717	3.4215
2212/M 2/1	309.7	0.0202	0.7052	0.3500	0.4277	1.2121	4.2429
2213/M 2/1	317.9	0.0202	0.6994	0.2893	0.3649	1.0670	3.4128
2214/M 2/1	302.6	0.0202	0.6938	0.2820	0.3900	1.1005	3.6878
2215/M 2/1	320.0	0.0190	0.6643	0.2468	0.4304	1.0855	3.9613
2216/M 2/1	305.6	0.0268	0.6995	0.3115	0.3985	1.2685	3.6746
2217/M 2/1	313.8	0.0208	0.6557	0.3082	0.4015	1.1412	3.4053
2218/M 2/1	303.3	0.0242	0.6758	0.3160	0.4361	0.9973	3.4864
2219/M 2/1	309.7	0.0226	0.7269	0.2808	0.4259	1.1351	3.5007
2220/M 2/1	297.0	0.0221	0.6840	0.3056	0.3995	1.0845	3.6272
Mean:	309.9	0.0216	0.6924	0.2961	0.4032	1.1364	3.6421
Standard deviation:	7.8	0.0024	0.0227	0.0285	0.0273	0.0896	0.2724
Number of observ. :	(10)	(10)	(10)	(10)	(10)	(10)	(10)
3211/M 3/1	309.9	0.0237	0.6623	0.2732	0.3385	1.1091	3.7886
3212/M 3/1	302.1	0.0259	0.6976	0.3450	0.3641	1.0591	3.3359
3213/M 3/1	281.9	0.0226	0.7369	0.3056	0.3966	1.0979	4.1179
3214/M 3/1	319.9	0.0213	0.6508	0.2911	0.4279	1.0940	3.6735
3215/M 3/1	305.6	0.0181	0.7009	0.3012	0.4346	1.1313	3.5162
3216/M 3/1	320.3	0.0244	0.6838	0.2883	0.3802	0.9697	3.6244
3217/M 3/1	285.0	0.0220	0.7296	0.3538	0.4309	1.4503	3.5448
3218/M 3/1	332.7	0.0151	0.6324	0.2646	0.3712	0.9698	3.4603
3219/M 3/1	319.2	0.0202	0.7193	0.3007	0.4154	1.1034	3.5511
3220/M 3/1	310.1	0.0237	0.6535	0.2526	0.4243	1.2434	3.4758
Mean:	308.7	0.0217	0.6867	0.2976	0.3984	1.1228	3.6089
Standard deviation:	15.9	0.0032	0.0360	0.0322	0.0334	0.1394	0.2176
Number of observ. :	(10)	(10)	(10)	(10)	(10)	(10)	(10)
4211/M 4/1	313.8	0.0214	0.6789	0.2182	0.3828	1.1111	4.3808
4212/M 4/1	272.6	0.0262	0.7819	0.3361	0.3884	1.1553	5.2720
4212/M 4/1 4213/M 4/1	333.2	0.0202	0.6449	0.3268	0.4242	1.2076	3.5831

Huntingdon Life Sciences Princeton Research Center East Millstone, New Jersey

Summary Statistics for % Organ to Body Weight Study number: 036143

Printed: 01-Feb-06 Page: 2

Page: 2 Version 4.2.2

Page 945

East Millstone,	New Jersey		
Terminal Sacrif	ice		

Animal Group/	Terminal		Brain		Heart		Liver
No/sex Subgroup B	ody wt. (g)	Adrenal Glands	Eŗ	oididymides		Kidneys	
4214/M 4/1	319.6	0.0244	0.6998	0.3212	0.3899	1.0984	3.5890
4215/M 4/1	339.7	0.0241	0.5709	0.2542	0.3574	0.9559	3.7114
4216/M 4/1	294.4	0.0267	0.6981	0.2846	0.4022	1.0993	3.4152
4217/M 4/1	315.6	0.0237	0.6271	0.3291	0.3965	0.9553	3.4596
4218/M 4/1	321.9	0.0178	0.6814	0.2955	0.3890	1.1377	3.4347
4219/M 4/1	273.2	0.0216	0.7809	0.3368	0.4129	1.2410	3.5665
4220/M 4/1	319.1	0.0220	0.6888	0.2673	0.4574	1.2766	4.1885
Mean:	310.3	0.0228	0.6853	0.2970	0.4001	1.1238	3.8601
Standard deviation:	23.0	0.0028	0.0641	0.0404	0.0270	0.1071	0.5935
Number of observ. :	(10)	(10)	(10)	(10)	(10)	(10)	(10)

Summary Statistics for % Organ to Body Weight Study number: 036143

Page 946
Printed: 01-Feb-06
Page: 3
Version 4.2.2

erminal!	Pituitary gland			Spleen		Thymus
y wt. (g) Lungs		Sem	inal vesicles		Testes	
		Male	Animals			
315 2	0.6794			0.2514	1.0097	0.1793
						0.1814
						0.1587
						0.1793
						0.1717
						0.2541
						0.1664
						0.1200
						0.1567
						0.2053
						0.1773
						0.0348
						(10)
(10)	(10)	(10)	(10)	(10)	(24)	(/
319.4	0.5986	0.0033	0.3869	0.1891	1.0331	0.1520
309.7	0.6088	0.0030	0.3012	0.2470	1.1091	0.2596
317.9	0.5488	0.0023	0.2334	0.1621	1.0024	0.1879
302.6	0.6763	0.0036	0.4197	0.2142	1.0340	0.2388
320.0	0.6360	0.0028	0.4076	0.2340	1.0351	0.3361
305.6	0.6473	0.0041	0.2986	0.2511	1.0691	0.1821
313.8	0.6140	0.0024	0.2752	0.2233	1.0603	0.2575
303.3	0.5515	0.0039	0.3059	0.2714	1.1534	0.2372
309.7	0.6394	0.0038	0.2040	0.2052	1.0215	0.1608
297.0	0.6756	0.0037	0.4662	0.2177	1.1071	0.2301
309.9	0.6196	0.0033	0.3299	0.2215	1.0625	0.2242
7.8	0.0448	0.0006	0.0859	0.0318	0.0474	0.0554
(10)	(10)	(10)	(10)	(10)	(10)	(10)
309 9	0.5223	0.0035	0.2770	0.1982	1.0340	0.1685
					1.1541	0.1351
				0.2389	1.1491	0.1947
						0.2419
						0.1854
						0.2173
						0.1380
						0.1509
						0.1356
						0.2061
					1.0541	0.1773
						0.0377
(10)	(10)	(10)	(10)	(10)	(10)	(10)
313 0	n 5999	0.0047	0.3779	0.2535	0.7949	0.1433
						0.1395
414.0	0.3931	0.0020	0.2050	0.2364		0.1825
3	309.7 317.9 302.6 320.0 305.6 313.8 303.3 309.7 297.0 309.9 7.8 (10) 309.9 302.1 281.9 319.9 305.6 320.3 285.0 332.7 319.2 310.1 308.7 15.9	315.2 0.6794 340.9 0.4953 299.6 0.5624 318.0 0.5358 319.6 0.5557 327.1 0.5913 284.9 0.7365 284.0 0.6194 295.2 0.6159 306.7 0.7581 309.1 0.6150 18.5 0.0862 (10) (10) 319.4 0.5986 309.7 0.6088 317.9 0.5488 302.6 0.6763 305.6 0.6473 313.8 0.6140 303.3 0.5515 309.7 0.6394 297.0 0.6756 309.9 0.6196 7.8 0.0448 (10) (10) 309.9 0.5223 302.1 0.5885 281.9 0.7030 319.9 0.6663 305.6 0.6265 320.3 0.6423 285.0 0.5975 332.7 0.6436 <td>Male 315.2 0.6794 0.0027 340.9 0.4953 0.0024 299.6 0.5624 0.0044 318.0 0.5358 0.0035 319.6 0.5557 0.0031 327.1 0.5913 0.0021 284.9 0.7365 0.0039 284.0 0.6159 0.0044 306.7 0.7581 0.0033 309.1 0.6150 0.0034 18.5 0.0862 0.0008 (10) (10) (10) 319.4 0.5986 0.0033 301.7 0.6088 0.0030 317.9 0.5488 0.0023 302.6 0.6763 0.0036 320.0 0.6360 0.0028 305.6 0.6473 0.0041 313.8 0.6140 0.0024 303.3 0.5515 0.0039 297.0 0.6756 0.0037 309.9 0.6360 0.0028 309.7 0.6088 0.0030 310.7 0.6088 0.0030 311.0 0.6150 0.0036 320.0 0.6360 0.0028 305.6 0.6473 0.0041 313.8 0.6140 0.0024 303.3 0.5515 0.0039 297.0 0.6756 0.0037 309.9 0.6196 0.0033 297.0 0.6756 0.0037 309.9 0.6196 0.0033 319.9 0.6196 0.0033 319.9 0.6663 0.0026 320.3 0.0448 0.0006 (10) (10) (10) 309.9 0.5223 0.0035 302.1 0.5885 0.0033 319.9 0.6663 0.0029 305.6 0.6265 0.0036 320.3 0.6423 0.0026 320.3 0.6423 0.0026 332.7 0.6436 0.0028 319.2 0.5956 0.0038 319.2 0.5956 0.0038 310.1 0.7375 0.0027 308.7 0.6323 0.0031 15.9 0.0615 0.0005 (10) (10) (10)</td> <td> Male Animals S 315.2 0.6794 0.0027 0.3549 340.9 0.4953 0.0024 0.2661 299.6 0.5624 0.0044 0.4279 318.0 0.5358 0.0035 0.3198 319.6 0.5557 0.0031 0.3840 327.1 0.5913 0.0021 0.3082 284.9 0.7365 0.0039 0.2545 284.0 0.6159 0.0044 0.3822 306.7 0.6159 0.0044 0.3822 306.7 0.7551 0.0033 0.4146 309.1 0.6150 0.0034 0.3409 18.5 0.0862 0.0008 0.0608 (10) (</td> <td> M a l e</td> <td> Male Animals Nanimals Nan</td>	Male 315.2 0.6794 0.0027 340.9 0.4953 0.0024 299.6 0.5624 0.0044 318.0 0.5358 0.0035 319.6 0.5557 0.0031 327.1 0.5913 0.0021 284.9 0.7365 0.0039 284.0 0.6159 0.0044 306.7 0.7581 0.0033 309.1 0.6150 0.0034 18.5 0.0862 0.0008 (10) (10) (10) 319.4 0.5986 0.0033 301.7 0.6088 0.0030 317.9 0.5488 0.0023 302.6 0.6763 0.0036 320.0 0.6360 0.0028 305.6 0.6473 0.0041 313.8 0.6140 0.0024 303.3 0.5515 0.0039 297.0 0.6756 0.0037 309.9 0.6360 0.0028 309.7 0.6088 0.0030 310.7 0.6088 0.0030 311.0 0.6150 0.0036 320.0 0.6360 0.0028 305.6 0.6473 0.0041 313.8 0.6140 0.0024 303.3 0.5515 0.0039 297.0 0.6756 0.0037 309.9 0.6196 0.0033 297.0 0.6756 0.0037 309.9 0.6196 0.0033 319.9 0.6196 0.0033 319.9 0.6663 0.0026 320.3 0.0448 0.0006 (10) (10) (10) 309.9 0.5223 0.0035 302.1 0.5885 0.0033 319.9 0.6663 0.0029 305.6 0.6265 0.0036 320.3 0.6423 0.0026 320.3 0.6423 0.0026 332.7 0.6436 0.0028 319.2 0.5956 0.0038 319.2 0.5956 0.0038 310.1 0.7375 0.0027 308.7 0.6323 0.0031 15.9 0.0615 0.0005 (10) (10) (10)	Male Animals S 315.2 0.6794 0.0027 0.3549 340.9 0.4953 0.0024 0.2661 299.6 0.5624 0.0044 0.4279 318.0 0.5358 0.0035 0.3198 319.6 0.5557 0.0031 0.3840 327.1 0.5913 0.0021 0.3082 284.9 0.7365 0.0039 0.2545 284.0 0.6159 0.0044 0.3822 306.7 0.6159 0.0044 0.3822 306.7 0.7551 0.0033 0.4146 309.1 0.6150 0.0034 0.3409 18.5 0.0862 0.0008 0.0608 (10) (M a l e	Male Animals Nanimals Nan

Huntingdon Life Sciences Princeton Research Center East Millstone, New Jersey

Summary Statistics for % Organ to Body Weight Study number: 036143

Page 947
Printed: 01-Feb-06
Page: 4
Version 4.2.2

Terminal	. s	acr	if	ice

Animal Group/	Animal Group/ Terminal		tary gland		Spleen		Thymus	
No/sex Subgroup Bo	ody wt. (g)	Lungs	Semina	l vesicles		Testes		
4214/M 4/1	319.6	0.5614	0.0040	0.3976	0.2068	1.0427	0.1629	
4215/M 4/1	339.7	0.6548	0.0038	0.2262	0.2055	0.9017	0.1667	
4216/M 4/1	294.4	0.6474	0.0053	0.4793	0.1730	1.0586	0.1744	
4217/M 4/1	315.6	0.6388	0.0037	0.3537	0.2199	0.9886	0.2181	
4218/M 4/1	321.9	0.6240	0.0039	0.3623	0.2674	1.1124	0.1528	
4219/M 4/1	273.2	0.7014	0.0034	0.4324	0.1829	1.0955	0.1178	
4220/M 4/1	319.1	0.6570	0.0041	0.4343	0.2003	1.0620	0.1732	
Mean:	310.3	0.6311	0.0039	0.3648	0.2414	1.0266	0.1631	
Standard deviation:	23.0	0.0414	0.0007	0.0773	0.0852	0.1070	0.0274	
Number of observ. :	(10)	(9)	(10)	(10)	(10)	(10)	(10)	

Huntingdon Life Sciences Princeton Research Center East Millstone, New Jersey

Summary Statistics for % Organ to Body Weight Study number: 036143

Page 948 Printed: 01-Feb-06 Page: 1

Terminal Sacrif			Brain		Kidneys		Lungs
	oup Body wt. (g)	Adrenal Glands	DIGIN	Heart		Liver	5-
HO/BEN BUDGE		Tarenar Grands					.
			Female	Animal	s		
1711/F 1/	1 228.7	0.0310	1.0036	0.4682	1.1983	3.8435	0.8206
1712/F 1/:		0.0379	0.9542	0.3974	1.2214	4.0574	0.7235
1713/F 1/		0.0354	0.8536	0.4265	1.0168	3.6621	0.6878
1714/F 1/		0.0371	1.0250	0.4220	1.1557	3.9393	0.9262
1715/F 1/		0.0354	0.9014	0.4508	1.1016	3.8912	0.7804
1716/F 1/	1 186.2	0.0424	1.0550	0.4589	1.0213	3.9926	0.7606
1717/F 1/	1 213.5	0.0327	0.9546	0.4059	1.1066	3.5384	1.0634
1718/F 1/	1 207.5	0.0495	0.9490	0.4835	1.3576	4.4669	0.9651
1719/F 1/:	1 220.5	0.0472	0.9263	0.4286	1.2278	4.8923	0.8153
1720/F 1/		0.0400	1.0099	0.4371	1.1676	4.3117	0.8661
Mea	an: 212.6	0.0389	0.9633	0.4379	1.1575	4.0595	0.8409
Standard deviat:	ion: 13.6	0.0060	0.0611	0.0274	0.1027	0.4009	0.1161
Number of observ		(10)	(10)	(10)	(10)	(10)	(10)
2711/F 2/	1 211.6	0.0300	1.0138	0.5105	1.3004	3.9078	0.8108
2712/F 2/		0.0392	0.9444	0.3784	1.1083	3.5922	0.7564
2713/F 2/3		0.0352	1.0596	0.4308	1.0852	3.8929	0.8903
2714/F 2/		0.0315	0.9828	0.4102	1.0783	4.4154	0.7502
2715/F 2/		0.0357	0.9063	0.4437	1.0993	4.2212	0.8704
2716/F 2/		0.0387	0.8806	0.3780	1.0465	3.4424	0.8216
2717/F 2/		0.0334	0.9535	0.4614	1.2063	3.7907	0.9975
2718/F 2/		0.0364	0.9768	0.3790	1.0017	3.4309	0.8584
2719/F 2/		0.0399	0.9635	0.4348	1.1201	4.1790	0.6885
2720/F 2/:		0.0389	0.9964	0.5112	1.2726	4.6390	0.8406
Mea		0.0359	0.9678	0.4338	1.1319	3.9511	0.8289
Standard deviat:		0.0034	0.0515	0.0500	0.0971	0.4087	0.0859
Number of observ		(10)	(10)	(10)	(10)	(10)	(10)
3711/F 3/3	1 219.7	0.0309	1.0010	0.4501	1.0869	3.7427	0.6910
3712/F 3/:		0.0373	0.9674	0.4221	1.1411	3.6889	0.7204
3713/F 3/:		0.0375	1.0537	0.4329	1.1857	3.5715	0.7400
3714/F 3/		0.0334	0.9754	0.4048	0.9342	3.2863	0.9199
3715/F 3/		0.0328	0.9567	0.4352	1.2028	3.6847	0.7127
3716/F 3/		0.0400	0.8198	0.4167	1.1353	3.8273	0.7187
3717/F 3/		0.0331	0.9304	0.4290	1.0526	3.6064	0.9381
3718/F 3/		0.0370	0.9979	0.4566	1.2140	4.2847	1.0026
3719/F 3/		0.0293	1.0261	0.4751	1.1657	4.5243	0.7819
3720/F 3/		0.0427	0.9844	0.4289	0.9770	3.7090	0.8891
M e		0.0354	0.9713	0.4351	1.1095	3.7926	0.8114
Standard deviat		0.0042	0.0636	0.0205	0.0956	0.3575	0.1143
Number of observ		(10)	(10)	(10)	(10)	(10)	(10)
4711/F 4/	1 196.1	0.0418	0.9686	0.4551	1.1057	3.9674	1.1213
4711/F 4/1 4712/F 4/1		0.0413	0.9390	0.4376	1.2606	4.0265	0.7091
	L 213.0		V				

Summary Statistics for % Organ to Body Weight Study number: 036143

Page 949 Printed: 01-Feb-06 Page: 2

Animal Group/	Terminal		Brain		Kidneys		Lungs
- ·	No/sex Subgroup Body wt. (g)	Adrenal Glands		Heart		Liver	
4714/F 4/1	215.2	0.0346	0.9717	0.4189	1.1449	3.8842	0.7023
4715/F 4/1	208.3	0.0295	1.0004	0.4280	1.1128	4.0623	0.7646
4716/F 4/1	210.3	0.0461	0.9214	0.3636	0.9835	3.6075	0.7182
4717/F 4/1	206.3	0.0392	0.9748	0.4321	1.1684	3.7536	1.1528
4718/F 4/1	214.7	0.0449	0.9503	0.4376	1.1646	4.4773	0.8567
4719/F 4/1	212.7	0.0314	0.8962	0.4156	1.0919	3.7782	0.9872
4720/F 4/1	196.5	0.0408	1.0760	0.4713	1.2554	4.8444	0.7689
Mean:	208.8	0.0391	0.9699	0.4307	1.1355	4.0061	0.8572
Standard deviation:	7.6	0.0057	0.0498	0.0289	0.0837	0.3857	0.1700
Number of observ. :	(10)	(10)	(10)	(10)	(10)	(10)	(10)

Summary Statistics for % Organ to Body Weight Study number: 036143

Page 950 Printed: 01-Feb-06 Page: 3 Version 4.2.2

Animal Group/	Terminal	Pitu	itary gland		Thymus		
No/sex Subgroup Bo	dy wt. (g)	Ovaries		Spleen		Uterus	
			Female	Animal	s		
1711/F 1/1	228.7	0.0425	0.0057	0.2264	0.2178	0.2304	
1712/F 1/1 1712/F 1/1	211.5	0.0695	0.0061	0.2105	0.2915	0.3296	
1713/F 1/1	231.0	0.0580	0.0060	0.2404	0.1664	0.2139	
1714/F 1/1	196.5	0.0466	0.0090	0.2200	0.2211	0.2769	
•	218.1	0.0558	0.0073	0.2238	0.2747	0.2722	
•	186.2	0.0552	0.0064	0.2675	0.2783	0.2550	
1716/F 1/1		0.0607	0.0072	0.2302	0.2453	0.2391	
1717/F 1/1	213.5	0.0696	0.0063	0.1836	0.2024	0.3150	
1718/F 1/1	207.5	0.0558	0.0067	0.2320	0.3077	0.2430	
1719/F 1/1	220.5	0.0506	0.0079	0.2919	0.2250	0.2618	
1720/F 1/1	212.5	0.0564	0.0069	0.2326	0.2430	0.2637	
Mean:	212.6		0.0010	0.2328	0.0444	0.0364	
Standard deviation:	13.6	0.0088	(10)	(10)	(10)	(10)	
Number of observ. :	(10)	(10)	(10)	(10)	(10)	(10)	
2711/F 2/1	211.6	0.0612	0.0069	0.2169	0.2234	0.2326	
2712/F 2/1	200.0	0.0583	0.0077	0.2184	0.2270	0.2352	
2713/F 2/1	207.3	0.0554	0.0062	0.3431	0.2753	0.2371	
2714/F 2/1	212.1	0.0500	0.0052	0.3275	0.3193	0.3107	
2715/F 2/1	222.1	0.0472	0.0064	0.2656	0.2610	0.1928	
2716/F 2/1	227.1	0.0578	0.0055	0.2536	0.2849	0.2415	
2717/F 2/1	209.5	0.0662	0.0058	0.2669	0.2228	0.2893	
2718/F 2/1	205.5	0.0587	0.0067	0.2429	0.2602	0.2228	
2710/F 2/1 2719/F 2/1	217.1	0.0530	0.0068	0.2391	0.3378	0.4561	
2719/F 2/1 2720/F 2/1	207.2	0.0508	0.0055	0.2253	0.2222	0.4552	
2/20/F 2/1 Mean:	212.0	0.0559	0.0063	0.2599	0.2634	0.2873	
Standard deviation:	8.1	0.0057	0.0008	0.0436	0.0416	0.0947	
	(10)	(10)	(10)	(10)	(10)	(10)	
Number of observ. :	(10)	(10)	(10)	(10)	(20)	(==,	
3711/F 3/1	219.7	0.0453	0.0075	0.2814	0.1929	0.2784	
3712/F 3/1	204.6	0.0440	0.0080	0.2088	0.2543	0.3157	
3713/F 3/1	197.4	0.0542	0.0057	0.1915	0.2586	0.2425	
3714/F 3/1	204.2	0.0452	0.0055	0.2326	0.2259	0.5573	
3715/F 3/1	208.2	0.0611	0.0054	0.2894	0.3320	0.3363	
3716/F 3/1	228.9	0.0617	0.0063	0.2381	0.2213	0.2692	
3717/F 3/1	219.1	0.0522	0.0071	0.2299	0.2097	0.3055	
3718/F 3/1	219.1	0.0490	0.0070	0.2299	0.1836	0.3084	
3718/F 3/1 3719/F 3/1	191.1	0.0579	0.0066	0.3119	0.2238	0.2939	
3720/F 3/1	210.4	0.0465	0.0066	0.2505	0.2139	0.2709	
Mean:	210.3	0.0517	0.0066	0.2464	0.2316	0.3178	
Standard deviation:	11.5	0.0068	0.0009	0.0374	0.0423	0.0884	
Number of observ. :	(10)	(10)	(10)	(10)	(10)	(10)	
					0.0577	0.2400	
4711/F 4/1		0.0607	0.0083	0.2322	0.2577	0.2499	
4712/F 4/1	219.0	0.0536	0.0068	0.2375	0.1900	0.3151	
4713/F 4/1	209.1	0.0534	0.0082	0.2948	0.1849	0.3026	

Summary Statistics for % Organ to Body Weight Study number: 036143

Page 951
Printed: 01-Feb-06
Page: 4

Animal Gr	oup/	Terminal	Pitui	tary gland		Thymus		
	-	ody wt. (g)	Ovaries		Spleen		Uterus	
4714/F	4/1	215.2	0.0358	0.0074	0.2005	0.2098	0.2732	
4715/F	4/1	208.3	0.0384	0.0068	0.2441	0.2137	0.2302	
4716/F	4/1	210.3	0.0630	0.0061	0.2216	0.1728	0.2146	
4717/F	4/1	206.3	0.0601	0.0063	0.2570	0.2493	0.2336	
4718/F	4/1	214.7	0.0638	0.0051	0.2858	0.2259	0.2627	
4719/F	4/1	212.7	0.0589	0.0057	0.2772	0.2039	0.2494	
4720/F	4/1	196.5	0.0664	0.0072	0.3208	0.2557	0.3017	
. м	ean:	208.8	0.0554	0.0068	0.2571	0.2164	0.2633	
Standard devi		7.6	0.0105	0.0010	0.0370	0.0302	0.0342	
Number of obs	serv. :	(10)	(10)	(10)	(10)	(10)	(10)	

Summary Statistics for % Organ to Brain Weight Study number: 036143

Page 952 Printed: 01-Feb-06 Page: 1

Terminal Sa	crifice							
Animal	~ .	Terminal		Brain		Heart		Liver
No/sex S	ubgroup	Body wt. (g)	Adrenal Glands		Epididymides		Kidneys	
				Male	Animals			
1211/M	1/1	315.2	2.8014	100.0000	37.5404	51.4921	132.7113	477.0830
1212/M	1/1	340.9	3.6813	100.0000	41.5623	60.0161	158.6409	551.6705
1213/M	1/1	299.6	3.6057	100.0000	42.2501	57.5445	158.8407	525.5637
1214/M	1/1	318.0	3.6758	100.0000	45.8404	57.5413	156.8298	580.8338
1215/M	1/1	319.6	3.4880	100.0000	49.6122	66.5866	176.9354	592.6188
1216/M	1/1	327.1	2.2802	100.0000	41.9227	58.5103	152.1627	553.4387
1217/M	1/1	284.9	3.8818	100.0000	43.8937	58.5627	167.3917	565.8381
1218/M	1/1	284.0	3.5021	100.0000	45.2803	61.0225	148.0069	457.9897
1219/M	1/1	295.2	2.9235	100.0000	41.9007	55.7940	153.9790	461.8884
1220/M	1/1	306.7	3.1293	100.0000	35.1749	64.0865	172.8069	518.2314
i	Mean	: 309.1	3.2969	100.0000	42.4978	59.1157	157.8305	528.5156
Standard de			0.5005	0.0000	4.1002	4.2130	12.7271	48.9553
Number of o	bserv.	: (10)	(10)	(10)	(10)	(10)	(10)	(10)
2211/M	2/1	319.4	2.8127	100.0000	37.6802	49.7322	176.8494	475.8262
2212/M	2/1	309.7	2.8617	100.0000	49.6337	60.6456	171.8864	601.6621
2213/M	2/1	317.9	2.8830	100.0000	41,3646	52.1679	152.5591	487.9554
2214/M	2/1	302.6	2.9055	100.0000	40.6430	56.2086	158.6187	531.5219
2215/M	2/1	320.0	2.8604	100.0000	37.1472	64.7911	163.4221	596.3634
2216/M	2/1	305.6	3.8312	100.0000	44.5292	56.9631	181.3444	525.3170
2217/M	2/1	313.8	3.1785	100.0000	47.0014	61.2364	174.0474	519.3381
2218/M	2/1	303.3	3.5761	100.0000	46.7629	64.5265	147.5679	515.8901
2219/M	2/1	309.7	3.1096	100.0000	38.6344	58.5980	156.1681	481.6223
2220/M	2/1	297.0	3.2293	100.0000	44.6736	58.4080	158.5606	530.3092
i	Mean	309.9	3.1248	100.0000	42.8070	58.3277	164.1024	526.5806
Standard de	viation:	: 7.8	0.3432	0.0000	4.3306	4.8568	11.3044	43.2084
Number of o	bserv.	: (10)	(10)	(10)	(10)	(10)	(10)	(10)
3211/M	3/1	309.9	3.5808	100.0000	41.2550	51.1059	167.4510	572.0014
3212/M	3/1	302.1	3.7104	100.0000	49.4449	52.1826	151.8030	478.1600
3213/M	3/1	281.9	3.0666	100.0000	41.4789	53.8273	148.9939	558.8533
3214/M	3/1	319.9	3.2662	100.0000	44.7284	65.7572	168.1013	564.4652
3215/M	3/1	305.6	2.5772	100.0000	42.9712	62.0104	161.4034	501.6807
3216/M	3/1	320.3	3.5750	100.0000	42.1651	55.6022	141.8135	530.0430
3217/M	3/1	285.0	3.0153	100.0000	48.4851	59.0603	198.7785	485.8469
3218/M	3/1	332.7	2.3956	100.0000	41.8366	58.7053	153.3628	547.1981
3219/M	3/1	319.2	2.8091	100.0000	41.8013	57.7457	153.3993	493.6676
3220/M	3/1	310.1	3.6269	100.0000	38.6578	64.9198	190.2640	531.8727
;	Mean:	: 308.7	3.1623	100.0000	43.2824	58.0917	163.5371	526.3789
Standard de	viation:	: 15.9	0.4665	0.0000	3.3585	5.0583	18.3315	34.4989
Number of o	bserv.	: (10)	(10)	(10)	(10)	(10)	(10)	(10)
4211/M	4/1	313.8	3.1448	100.0000	32.1380	56.3858	163.6470	645.2523
4212/M	4/1	272.6	3.3498	100.0000	42.9885	49.6739	147.7551	674.2435
4213/M	4/1	333.2	3.1320	100.0000	50.6701	65.7763	187.2580	555.6032

Summary Statistics for % Organ to Brain Weight Study number: 036143

Page 953 Printed: 01-Feb-06 Page: 2

Animal Group/	Terminal		Brain		Heart		Liver
No/sex Subgroup Bo		Adrenal Glands	I	Epididymides		Kidneys	
4214/M 4/1	319.6	3.4918	100.0000	45.8935	55.7160	156.9545	512.8225
4215/M 4/1	339.7	4.2232	100.0000	44.5212	62.5999	167.4470	650.1058
4216/M 4/1	294.4	3.8293	100.0000	40.7746	57.6100	157.4737	489.2127
4217/M 4/1	315.6	3.7744	100.0000	52.4734	63.2207	152.3319	551.6902
4218/M 4/1	321.9	2.6078	100.0000	43.3710	57.0849	166.9691	504.0668
4219/M 4/1	273.2	2.7654	100.0000	43.1263	52.8709	158.9126	456.7003
4220/M 4/1	319.1	3.1982	100.0000	38.7971	66.4074	185.3192	608.0433
Mean:	310.3	3.3517	100.0000	43.4754	58.7346	164.4068	564.7740
Standard deviation:	23.0	0.4941	0.0000	5.7519	5.5639	13.0502	75.7504
Number of observ. :	(10)	(10)	(10)	(10)	(10)	(10)	(10)

Summary Statistics for % Organ to Brain Weight Study number: 036143

Page 954
Printed: 01-Feb-06
Page: 3
Version 4.2.2

Animal Group/	Terminal	Pitui	tary gland		Spleen		Thymus
No/sex Subgroup Bo		Lungs		inal vesicles	•	Testes	
no, buil buogloup bu							
			Male	Animals			
1211/M 1/1	315.2	91.0389	0.3613	47.5599	33.6805	135.2874	24.0265
1212/M 1/1	340.9	79.7930	0.3828	42.8619	30.5279	149.7992	29.2188
1213/M 1/1	299.6	76.9010	0.5979	58.5167	32.7020	157.0242	21.7070
1214/M 1/1	318.0	80.8148	0.5217	48.2309	36.4637	157.6314	27.0442
1215/M 1/1	319.6	88.8756	0.4904	61.4172	45.7639	160.7316	27.4633
1216/M 1/1	327.1	89.0875	0.3224	46.4416	39.4214	163.0199	38.2929
1217/M 1/1	284.9	103.4922	0.5524	35.7601	29.5847	174.3761	23.3797
1218/M 1/1	284.0	86.8906	0.5532	41.5955	36.1423	159.6888	16.8338
1219/M 1/1	295.2	80.2906	0.5741	49.8234	25.2473	133.6248	20.4337
1220/M 1/1	306.7	110.0743	0.4829	60.1998	36.9455	128.6986	29.8064
Mean:	309.1	88.7258	0.4839	49.2407	34.6479	151.9882	25.8206
Standard deviation:	18.5	10.7292	0.0963	8.4807	5.7044	14.8294	5.9914
Number of observ. :	(10)	(10)	(10)	(10)	(10)	(10)	(10)
			0.4615	F3 0076	26.2943	143.6670	21.1390
2211/M 2/1	319.4	83.2412	0.4615	53.8076	35.0229	157.2802	36.8178
2212/M 2/1	309.7	86.3278	0.4304	42.7106		143.3165	26.8688
2213/M 2/1	317.9	78.4609	0.3238	33.3723	23.1717	149.0355	34.4177
2214/M 2/1	302.6	97.4708	0.5192	60.4954	30.8693	155.8289	50.5928
2215/M 2/1	320.0	95.7424	0.4281	61.3662	35.2324		26.0373
2216/M 2/1	305.6	92.5387	0.5801	42.6907	35.8984	152.8418	39.2642
2217/M 2/1	313.8	93.6431	0.3694	41.9664	34.0591	161.7030	
2218/M 2/1	303.3	81.6022	0.5757	45.2652	40.1620	170.6738	35.0978
2219/M 2/1	309.7	87.9659	0.5197	28.0707	28.2262	140.5402	22.1181
2220/M 2/1	297.0	98.7743	0.5366	68.1648	31.8352	161.8638	33.6467
Mean:	309.9	89.5767	0.4744	47.7910	32.0771	153.6751	32.6000
Standard deviation:	7.8	7.0764	0.0865	12.8491	5.0731	9.6626	8.9052
Number of observ. :	(10)	(10)	(10)	(10)	(10)	(10)	(10)
3211/M 3/1	309.9	78.8561	0.5359	41.8250	29.9230	156.1142	25.4360
3212/M 3/1	302.1	84.3519	0.4745	46.0144	25.5741	165.4299	19.3633
3213/M 3/1	281.9	95.4073	0.4477	46.5771	32.4283	155.9455	26.4298
3214/M 3/1	319.9	102.3873	0.4467	54.7096	42.5669	158.3650	37.1680
3215/M 3/1	305.6	89.3879	0.5089	54.9185	32.0230	143.2700	26.4485
3216/M 3/1	320.3	93.9321	0.3744	33.5814	37.1245	163.3686	31.7779
3217/M 3/1	285.0	81.8986	0.3559	45.6141	42.6854	170.9868	18.9189
3217/M 3/1 3218/M 3/1	332.7	101.7777	0.4468	44.8691	26.2940	143.0534	23.8652
3218/M 3/1 3219/M 3/1	319.2	82.7969	0.5313	56.7658	36.1091	136.3747	18.8450
3219/M 3/1 3220/M 3/1	310.1	112.8497	0.4145	32.4945	33.7873	140.5132	31.5322
3220/M 3/1 Mean:	308.7	92.3645	0.4537	45.7370	33.8516	153.3421	25.9785
	15.9	10.9394	0.0613	8.3428	5.9277	11.8202	6.1405
Standard deviation: Number of observ. :	(10)	(10)	(10)	(10)	(10)	(10)	(10)
	212.0	00 3540	0.6853	55.6583	37.3387	117,0758	21.0843
4211/M 4/1	313.8	88.3549		36.2655	59.9484	147.9193	17.8466
4212/M 4/1	272.6	76.1060	0.3612	46.6121	36.6577	163.3191	28.2995
4213/M 4/1	333.2	149.4695E	0.5538	40.0141	30.03//	**************************************	20.2773

Summary Statistics for % Organ to Brain Weight Study number: 036143

Page 955 Printed: 01-Feb-06 Page: 4

Animal Group/	Terminal	Pitui	tary gland		Spleen		Thymus
No/sex Subgroup		Lungs	Semin	al vesicles	_	Testes	
4214/M 4/1	319.6	80.2209	0.5723	56.8114	29.5480	148.9874	23.2798
4215/M 4/1	339.7	114.7012	0.6703	39.6226	35.9975	157.9436	29.2064
4216/M 4/1	294.4	92.7355	0.7542	68.6600	24.7859	151.6349	24.9805
4217/M 4/1	315.6	101.8695	0.5962	56.4044	35.0614	157.6424	34.7734
4218/M 4/1	321.9	91.5747	0.5745	53.1686	39.2359	163.2534	22.4218
4219/M 4/1	273.2	89.8195	0.4406	55.3691	23.4169	140.2766	15.0832
4220/M 4/1	319.1	95.3733	0.6005	63.0454	29.0797	154.1741	25.1444
Mean	: 310.3	92.3062	0.5809	53.1617	35.1070	150.2226	24.2120
Standard deviation	: 23.0	11.3656	0.1147	9.9136	10.2888	13.6547	5.6996
Number of observ.	: (10)	(9)	(10)	(10)	(10)	(10)	(10)

Huntingdon Life Sciences Princeton Research Center East Millstone, New Jersey

Summary Statistics for % Organ to Brain Weight Study number: 036143

Page 956 Printed: 01-Feb-06 Page: 1 Version 4.2.2

Terminal S	Group/	Terminal		Brain		Kidneys		Lungs
	•	Body wt. (g)	Adrenal Glands	Diam	Heart		Liver	J
NO/Sex	auparoup E	ouy we. (g)	ratenal Glands					
				Female	Animal	Ls		
1711/F	7 1/1	228.7	3.0934	100.0000	46.6495	119.3970	382.9732	81.7663
1712/F	•	211.5	3.9740	100.0000	41.6431	128.0066	425.2218	75.8238
1713/F	-	231.0	4.1432	100.0000	49.9569	119.1136	429.0026	80.5771
1714/F	•	196.5	3.6195	100.0000	41.1747	112.7551	384.3305	90.3580
1715/F		218.1	3.9268	100.0000	50.0051	122.2075	431.6735	86.5768
1716/F	•	186.2	4.0214	100.0000	43.4971	96.7982	378.4322	72.0947
1717/F		213.5	3.4297	100.0000	42.5200	115.9168	370.6590	111.3979
1718/F	•	207.5	5.2153	100.0000	50.9496	143.0581	470.6886	101.6911
1719/F	•	220.5	5.0916	100.0000	46.2646	132.5370	528.1309	88.0104
1720/F	-	212.5	3.9560	100.0000	43.2832	115.6144	426.9326	85.7556
1/20/1	Mean:	212.6	4.0471	100.0000	45.5944	120.5404	422.8045	87.4052
Standard d		13.6	0.6639	0.0000	3.6978	12.3952	48.6271	11.7340
Number of		(10)	(10)	(10)	(10)	(10)	(10)	(10)
Number or	Observ	(10)	(20)	(20)	(
2711/F	7 2/1	211.6	2.9553	100.0000	50.3519	128.2618	385.4380	79.9702
•		200.0	4.1508	100.0000	40.0678	117.3497	380.3685	80.0932
2712/F 2713/F	•	207.3	3.3188	100.0000	40.6537	102.4174	367.3814	84.0208
•		212.1	3.2045	100.0000	41.7394	109.7093	449.2517	76.3264
2714/F	-	222.1	3.9396	100.0000	48.9592	121.2927	465.7609	96.0405
2715/F			4.4002	100.0000	42.9221	118.8309	390.8996	93.299 7
2716/F		227.1	3.4994	100.0000	48.3905	126.5182	397.5720	104.6158
2717/F		209.5	3.7262	100.0000	38.7965	102.5456	351.2255	87.8798
2718/F		205.5		100.0000	45.1238	116.2539	433.7270	71.4600
2719/F	•	217.1	4.1448	100.0000	51.3029	127.7148	465.5672	84.3602
2720/F		207.2	3.8991	100.0000	44.8308	117.0894	408.7192	85.8067
	Mean;	212.0	3.7239	0.0000	4.6178	9.5995	41.5741	9.9256
Standard d		8.1	0.4677		(10)	(10)	(10)	(10)
Number of	observ. :	(10)	(10)	(10)	(10)	(10)	(10)	(20)
3711/F	7 3/1	219.7	3.0831	100.0000	44.9638	108.5899	373.9121	69.0373
3712/E	-	204.6	3.8549	100.0000	43.6366	117.9508	381.3217	74.4708
3713/E	•	197.4	3.5577	100.0000	41.0817	112.5289	338.9471	70.2260
3714/E	· .	204.2	3.4292	100.0000	41.5073	95.7775	336.9333	94.3164
3715/E	•	208.2	3.4239	100.0000	45.4842	125.7192	385.1349	74.4917
3715/E	•	228.9	4.8814	100.0000	50.8287	138.4812	466.8639	87.6685
3710/I	•	219.1	3.5616	100.0000	46.1146	113.1427	387.6374	100.8291
3717/E		219.1	3.7047	100.0000	45.7556	121.6566	429.3725	100.4665
3719/E	-	191.1	2.8509	100.0000	46.3025	113.6067	440.9425	76.2036
3720/E	-	210.4	4.3357	100.0000	43.5738	99.2468	376.7719	90.3196
3/20/1	Mean:	210.4	3.6683	100.0000	44.9249	114.6700	391.783 7	83.8030
Standard o		11.5	0.5873	0.0000	2.7710	12.4206	42.1405	12,3352
Number of		(10)	(10)	(10)	(10)	(10)	(10)	(10)
numer or	ODSELV. :	(10)	(10)	\== <i>'</i>	••			
4711/	F 4/1	196.1	4.3169	100.0000	46.9808	114.1511	409.5815	115.7621
4711/E 4712/E		219.0	4.7170	100.0000	46.6057	134.2540	428.8125	75.5155
4/12/1	F 4/1	209.1	3.8230	100.0000	44.6956	106.6616	365.7221	79.0357

Number of observ. :

(10)

Summary Statistics for % Organ to Brain Weight Study number: 036143

(10)

(10)

Printed: 01-Feb-06 Page: 2

(10)

Version 4.2.2

Page 957

(10)

Animal Group/	Terminal		Brain		Kidneys		Lungs
No/sex Subgroup Bo		Adrenal Glands		Heart		Liver	
4714/F 4/1	215.2	3.5629	100.0000	43.1133	117.8336	399.7513	72.2812
4715/F 4/1	208.3	2.9465	100.0000	42.7824	111.2391	406.0707	76.4325
4716/F 4/1	210.3	5.0008	100.0000	39.4643	106.7348	391.5261	77.9429
4717/F 4/1	206.3	4.0229	100.0000	44.3312	119.8608	385.0622	118.2596
4718/F 4/1	214.7	4.7250	100.0000	46.0494	122.5517	471.1695	90.1578
4719/F 4/1	212.7	3.5044	100.0000	46.3697	121.8340	421.5875	110.1511
4720/F 4/1	196.5	3.7932	100.0000	43.8065	116.6769	450.2342	71.4610
Mean:	208.8	4.0413	100.0000	44.4199	117.1798	412.9518	88.6999
Standard deviation:	7.6	0.6451	0.0000	2.2901	8.2604	31.2799	18.7634
							/101

(10)

(10)

Summary Statistics for % Organ to Brain Weight Study number: 036143

Page 958
Printed: 01-Feb-06
Page: 3
Version 4.2.2

Terminal Sacrifice	Mowminal	Di biri	taru aland		Thymus	
- ·	Terminal		itary gland	Spleen	THYMUS	Uterus
No/sex Subgroup Bo	ay wt. (g)	Ovaries		obreen		0041 Mp
			Female	Animal	s	
1711/F 1/1	228.7	4.2393	0.5708	22.5601	21.6975	22.9566
1712/F 1/1	211.5	7.2841	0.6442	22.0604	30.5535	34.5473
1713/F 1/1	231.0	6.7955	0.6998	28.1657	19.4888	25.0520
1714/F 1/1	196.5	4.5430	0.8788	21.4637	21.5679	27.0145
1715/F 1/1	218.1	6.1851	0.8087	24.8321	30.4730	30.1933
1716/F 1/1	186.2	5.2278	0.6058	25.3500	26.3782	24.1741
1717/F 1/1	213.5	6.3589	0.7556	24.1107	25.6955	25.0478
1718/F 1/1	207.5	7.3329	0.6602	19.3429	21.3285	33.1962
1719/F 1/1	220.5	6.0266	0.7246	25.0416	33.2175	26.2313
1720/F 1/1	212.5	5.0091	0.7782	28.8989	22.2776	25.9214
Mean:	212.6	5.9002	0.7127	24.1826	25.2678	27.4335
Standard deviation:	13.6	1.1017	0.0956	2.9550	4.7602	3.9068
Number of observ. :	(10)	(10)	(10)	(10)	(10)	(10)
2711/F 2/1	211.6	6.0365	0.6852	21.3956	22.0342	22.9432
2711/F 2/1 2712/F 2/1	200.0	6.1732	0.8100	23.1258	24.0364	24.9047
2712/F 2/1 2713/F 2/1	207.3	5.2263	0.5873	32.3773	25.9811	22.3800
2713/F 2/1 2714/F 2/1	212.1	5.0849	0.5325	33.3205	32.4906	31.6176
2714/F 2/1 2715/F 2/1	222.1	5.2064	0.7104	29.3109	28.7992	21.2678
	227.1	6.5603	0.6250	28.8014	32.3566	27.4264
2716/F 2/1 2717/F 2/1	209.5	6.9387	0.6108	27.9900	23.3692	30.3379
2717/F 2/1 2718/F 2/1	205.5	6.0128	0.6875	24.8630	26.6364	22.8056
2718/F 2/1 2719/F 2/1	217.1	5.5024	0.7027	24.8112	35.0607	47.3420
*	207.2	5.1003	0.5522	22.6097	22.2949	45.6796
2720/F 2/1	212.0	5.7842	0.6504	26.8606	27.3059	29.6705
Mean:	8.1	0.6569	0.0844	4.1270	4.6673	9.5260
Standard deviation:	(10)	(10)	(10)	(10)	(10)	(10)
Number of observ. :	(10)	(10)	(10)	(10)	(10)	(10)
3711/F 3/1	219.7	4.5291	0.7458	28.1115	19.2715	27.8114
3712/F 3/1	204.6	4.5521	0.8286	21.5834	26.2921	32.6378
3713/F 3/1	197.4	5.1394	0.5385	18.1731	24.5433	23.0096
3714/F 3/1	204.2	4.6342	0.5674	23.8490	23.1561	57.1421
3715/F 3/1	208.2	6.3909	0.5623	30.2525	34.7005	35.1474
3716/F 3/1	228.9	7.5300	0.7727	29.0434	26.9917	32.8377
3717/F 3/1	219.1	5.6073	0.7653	24.7155	22.5422	32.8346
3718/F 3/1	219.1	4.9076	0.6998	23.0379	18.4001	30.9093
3719/F 3/1	191.1	5.6457	0.6426	30.3958	21.8125	28.6465
3720/F 3/1	210.4	4.7219	0.6711	25.4442	21.7314	27.5203
Mean:	210.3	5.3658	0.6794	25.4606	23.9442	32.8497
Standard deviation:	11.5	0.9686	0.1004	4.0048	4.6602	9.2346
Number of observ. :	(10)	(10)	(10)	(10)	(10)	(10)
4711/F 4/1	196.1	6.2701	0.8581	23.9747	26.6017	25.7963
4711/F 4/1 4712/F 4/1	219.0	5.7041	0.7246	25.2918	20.2295	33.5538
4712/F 4/1 4713/F 4/1	209.1	5.3331	0.8172	29.4562	18.4746	30.2351
7/13/5 4/1	203.1	3.3331	0.02.2	J	****	

Summary Statistics for % Organ to Brain Weight Study number: 036143

Page 959
Printed: 01-Feb-06
Page: 4

Version 4.2.2

Animal G	roup/	Terminal	Pitui	tary gland		Thymus	
No/sex Sul	bgroup B	ody wt. (g)	Ovaries		Spleen		Uterus
4714/F	4/1	215.2	3.6872	0.7652	20.6361	21.5925	28.1205
4715/F	4/1	208.3	3.8343	0.6814	24.4025	21.3600	23.0156
4716/F	4/1	210.3	6.8380	0.6606	24.0543	18.7594	23.2905
4717/F	4/1	206.3	6.1661	0.6464	26.3600	25.5793	23.9632
4718/F	4/1	214.7	6.7101	0.5392	30.0755	23.7673	27.6444
4719/F	4/1	212.7	6.5733	0.6348	30.9254	22.7573	27.8250
4720/F	4/1	196.5	6.1723	0.6716	29.8160	23.7620	28.0377
	ean:	208.8	5.7289	0.6999	26.4993	22.2884	27.1482
standard dev		7.6	1.1305	0.0939	3.4112	2.7202	3.2818
Number of ob		(10)	(10)	(10)	(10)	(10)	(10)

Raw Data Listing of Gross Observations	
with Modifiers	Appendix H

Key to Abbreviations

LN = Lymph Node

Nose/Turb Sec 1 = Nose/Turbinates Section 1
Nose/Turb Sec 2 = Nose/Turbinates Section 2
Nose/Turb Sec 3 = Nose/Turbinates Section 3
Nose/Turb Sec 4 = Nose/Turbinates Section 4

SC = Spinal Cord

Submandib/Max = Submandibular/Submaxillary

V-DVTC = Ventral Diverticulum

V-SM-G = Ventral Seromucinous Glands

Corresponding exposure levels for each group were as follows:

Group 1 - 0 ppm Group 2 - 90 ppm Group 3 - 900 ppm Group 4 - 9000 ppm

Note:

In the following table, nasopharyngeal tissue, as specified by the protocol, appears as Nose/Turb Sec 1, 2, 3 and 4 and larynx is presented as V-DVTC and V-SM-G. This is due to the fact that the Xybion protocol was entered with specific sections of each tissue delineated in the event that a microscopic examination was required.

Huntingdon Life Sciences Princeton Research Center East Millstone, New Jersey

Raw Data Listing of Gross Observations with Modifiers Study number: 036143

Page 961
Printed: 10-Sep-03
Page: 1
Version 4.2.2

Animal		Group/	Date data				
	Sex	Subgroup	taken	Tissue / Observation	(s) Locator, Color	, General, Measur	ements,
		J <u>-</u>			Sever	ity levels	
1211	М	1/1	22-Jul-03	Within normal limit	S		
1212	М	1/1	22-Jul-03	Within normal limit	s		
1213	М	1/1	22-Jul-03	Within normal limit	s		
1214	М	1/1		Seminal vesicles			
		,	22-Jul-03	Small, Right, , ,	, Severe		
				Tissues marked 'Wit	hin normal limits	:	
			22-Jul-03	Adrenal Glands	Aorta	Brain	Cecum
				Colon	Duodenum	Epididymides	Esophagus
				Eyes	Femur	Femoral Marrow	Heart
				Ileum	Jejunum	Kidneys	Lacrimal gland
				Larynx: V-SM-G	Larynx: V-DVTC	Liver	Lungs
				Mammary-protocol	Mediastinal LN	Mesenteric LN	Nerve
				Nose/Turb Sec 1	Nose/Turb Sec 2	Nose/Turb Sec 3	Nose/Turb Sec 4
				Optic nerve	Pancreas	Parathyroid	Pituitary gland
				Prostate	Rectum/Low Colon		Skin-protocol
				Skeletal muscle	Cervical SC	Thoracic SC	Lumbar SC
				Spleen	Sternum	Sternal Marrow	Stomach
		•		Testes	Thymus	Thyroid gland	Trachea
				Urinary bladder	Zymbal's gland	inlicia diana	220000
				Offinary Drauder	aymour b grana		
1215	М	1/1	22-Jul-03	Within normal limit	s		
1216	М	1/1	23-Jul-03	Within normal limit	s		
1217	М	1/1	23-Jul-03	Within normal limit	s		
1218	М	1/1		Skin (other)			
			23-Jul-03	Sore, Cervical, F	Red, Areas, 1.0 - 1	5 cm,	
				Tissues marked 'Wit	hin normal limits	:	
			23-Jul-03	Adrenal Glands	Aorta	Brain	Cecum
				Colon	Duodenum	Epididymides	Esophagus
				Eyes	Femur	Femoral Marrow	Heart
				Ileum	Jejunum	Kidneys	Lacrimal gland
				Larynx: V-SM-G	Larynx: V-DVTC	Liver	Lungs
				Mammary-protocol	Mediastinal LN	Mesenteric LN	Nerve
				Nose/Turb Sec 1	Nose/Turb Sec 2	Nose/Turb Sec 3	Nose/Turb Sec 4
					Pancreas	Parathyroid	Pituitary gland
				Optic nerve			Seminal vesicles
				Prostate	Rectum/Low Colon	Cervical SC	Thoracic SC
				Skin-protocol	Skeletal muscle	Cervicar ac	Indiacio ac

Huntingdon Life Sciences Raw Data Listing of Gross Observations with Modifiers
Princeton Research Center Study number: 036143
East Millstone, New Jersey
Terminal Sacrifice

rminal Animal		Group/	Date data						
	Sex	Subgroup	taken		Tissue / Observation		r, General, Measur city levels	ements,	
1218	М	1/1	23-Jul-03		Tissues marked 'Wit Lumbar SC Stomach Trachea	thin normal limits' Spleen Testes Urinary bladder	Sternum Thymus	Sternal Marrow Thyroid gland	
1219	М	1/1	23-Jul-03		Within normal limit	s			
1220	M	1/1	23-Jul-03		Within normal limit	s			
2211	М	2/1	22-Jul-03		Within normal limit	s			
2212	М	2/1	22-Jul-03		Within normal limit	s			
2213 M	М	2/1	22-Jul-03		Cecum Abnormal Contents, , Black, Material, , Severe Thick Ileum				
			22-Jul-03		Abnormal Contents Thick	s, , Black, Materia	al, , Severe		
			22-Jul-03		Jejunum Abnormal Contents Thick Lungs	s, , Black, Materia	al, , Severe		
			22-Jul-03			diaphragmatic lob	e, Tan, Focus, 0.	2 - 0.5 cm,	
			· 22-Jul-03		Discolored, Right cardiac lobe, , Foci, = 0.1 cm, Slight Tissues marked 'Within normal limits':</td				
			22-Jul-03		Adrenal Glands Duodenum Femur Lacrimal gland Mammary-protocol Nose/Turb Sec 1 Optic nerve Prostate Skin-protocol Lumbar SC Stomach Trachea	Aorta Epididymides Femoral Marrow Larynx: V-SM-G Mediastinal LN Nose/Turb Sec 2 Pancreas Rectum/Low Colon Skeletal muscle Spleen Testes Urinary bladder	Brain Esophagus Heart Larynx: V-DVTC Mesenteric LN Nose/Turb Sec 3 Parathyroid Salivary glands Cervical SC Sternum Thymus Zymbal's gland	Colon Eyes Kidneys Liver Nerve Nose/Turb Sec Pituitary gland Seminal vesicle Thoracic SC Sternal Marrow Thyroid gland	
2214	M	2/1	22-Jul <i>-</i> 03	46	Within normal limit	-	-		

Page 962 Printed: 10-Sep-03

Version 4.2.2

Page: 2

Page 963 Printed: 10-Sep-03

Huntingdon Life Sciences Princeton Research Center East Millstone, New Jersey Terminal Sacrifice

Raw Data Listing of Gross Observations with Modifiers Study number: 036143

Page: 3 Version

Animal		Group/	Date data	
number	Sex	Subgroup	taken	Tissue / Observation(s) Locator, Color, General, Measurements, Severity levels
2215	М	2/1		Lungs
			22-Jul-03	Discolored, All lobes, Black, Foci, = 0.1 cm, Slight Thymus</td
			22-Jul-03	Discolored, , Red, Foci, = 0.1 cm, Slight Tissues marked 'Within normal limits':</td
			22-Jul-03	Adrenal Glands Aorta Brain Cecum Colon Duodenum Epididymides Esophagus Eyes Femur Femoral Marrow Heart Ileum Jejunum Kidneys Lacrimal gland Larynx: V-SM-G Larynx: V-DVTC Liver Mammary-protoc Mediastinal LN Mesenteric LN Nerve Nose/Turb Sec Nose/Turb Sec 2 Nose/Turb Sec 3 Nose/Turb Sec 4 Optic nerve Pancreas Parathyroid Pituitary gland Prostate Rectum/Low Colon Salivary glands Seminal vesicles Skin-protocol Skeletal muscle Cervical SC Thoracic SC Lumbar SC Spleen Sternum Sternal Marrow Stomach Testes Thyroid gland Trachea Urinary bladde Zymbal's gland
2216	М	2/1	23-Jul-03	Within normal limits
2217	М	2/1	23-Jul-03	Within normal limits
2218	М	2/1	23-Jul-03	Within normal limits
2219	M	2/1	23-Jul-03	Within normal limits
2220	M	2/1	23-Jul-03	Within normal limits
3211	M	3/1	22-Jul-03	Within normal limits
3212	М	3/1	22-Jul-03	Within normal limits
3213	М	3/1	22-Jul-03	Within normal limits
3214	М	3/1	22-Jul-03	Kidneys Dilated Pelvis, Right, , , , Moderate Submandib/Max LN
			22-Jul-03	Enlarged, , , , , Moderate Tissues marked 'Within normal limits':
			22-Jul-03	Adrenal Glands Aorta Brain Cecum Colon Duodenum Epididymides Esophagus

Huntingdon Life Sciences
Princeton Research Center

Raw Data Listing of Gross Observations with Modifiers Study number: 036143

Printed: 10-Sep-03
Page: 4
Version 4.2.2

Page 964

Animal number S	Sex 8	Group/ Subgroup	Date data taken	Tissue / Observation(s) Locator, Color, General, Measurements, Severity levels Tissues marked 'Within normal limits': Eyes Femur Femoral Marrow Heart Ileum Jejunum Lacrimal gland Larynx: V-SM-G			
3214	M	3/1	22-Jul-03				
				Ileum Larynx: V-DVTC Mediastinal LN Nose/Turb Sec 2 Pancreas Rectum/Low Colon Skeletal muscle Spleen Testes Urinary bladder	Jejunum Liver Mesenteric LN Nose/Turb Sec 3 Parathyroid Salivary glands Cervical SC Sternum Thymus Zymbal's gland	Lacrimal gland Lungs Nerve Nose/Turb Sec 4 Pituitary gland Seminal vesicles Thoracic SC Sternal Marrow Thyroid gland	Mammary-protoco Nose/Turb Sec 1 Optic nerve Prostate
3215	М	3/1	22-Jul-03	Within normal limit	s		
3216	M	3/1	23-Jul-03	Within normal limit	s		
3217 M	M	3/1		Kidneys			
			23-Jul-03	Dilated Pelvis, B Urinary bladder			
			23-Jul-03	Thickened, , , ,	, Severe		
			23-Jul-03	Calculus, Mucosa, Lymph Node,other			
			23-Jul-03		iac, , , , Modera	te	
			23-Jul-03	<u> </u>	liac, , , , Moder		
			22 222 22	Tissues marked 'Within normal limits':			
			23-Jul-03	Adrenal Glands	Aorta	Brain	Cecum
				Colon	Duodenum	Epididymides	Esophagus
			•	Eyes	Femur	Femoral Marrow	Heart
				Ileum	Jejunum	Lacrimal gland	Larynx: V-SM-G
				Larynx: V-DVTC	Liver	Lungs	Mammary-protoco
				Mediastinal LN	Mesenteric LN	Nerve	Nose/Turb Sec 1
				Nose/Turb Sec 2	Nose/Turb Sec 3	Nose/Turb Sec 4	Optic nerve
				Pancreas	Parathyroid	Pituitary gland Seminal vesicles	Prostate
				Rectum/Low Colon Skeletal muscle	Salivary glands Cervical SC	Thoracic SC	Skin-protocol Lumbar SC
				Spleen Testes Zymbal's gland	Sternum Thymus	Sternal Marrow Thyroid gland	Stomach Trachea
3218	м	3/1	23-Jul-03	Within normal limit	s .		
3219	М	3/1	23-Jul-03	Within normal limit	s		

Huntingdon Life Sciences Raw Data Listing of Gross Observations with Modifiers Princeton Research Center Study number: 036143

East Millstone, New Jersey

Animal		Group/	Date data	=======================================				
number	ber Sex Subgroup taker			Tissue / Observation(s) Locator, Color, General, Measurements, Severity levels				
3220	м	3/1	23-Jul-03	Within normal limits				
4211	М	4/1	22-Jul-03	Within normal limits				
4212	М	4/1		Spleen				
			22-Jul-03	Irregular Surface, , , Rough, , Moderate				
			22-Jul-03	Discolored, , Tan, Foci, 0.2 - 0.5 cm, Moderate issues marked 'Within normal limits':				
			22-Jul-03	Adrenal Glands Aorta Brain Cecum Colon Duodenum Epididymides Esophagus. Eyes Femur Femoral Marrow Heart Ileum Jejunum Kidneys Lacrimal gland				
				Larynx: V-SM-G Larynx: V-DVTC Liver Lungs Mammary-protocol Mediastinal LN Mesenteric LN Nerve Nose/Turb Sec 1 Nose/Turb Sec 2 Nose/Turb Sec 3 Nose/Turb Sec Optic nerve Pancreas Parathyroid Pituitary glan Prostate Rectum/Low Colon Salivary glands Seminal vesic Skin-protocol Skeletal muscle Cervical SC Thoracic SC Lumbar SC Sternum Sternal Marrow Stomach Testes Thymus Thyroid gland Trachea Urinary bladder Zymbal's gland				
4213	M	4/1		Lungs				
			22-Jul-03	Discolored, All lobes, Red, , , Slight Tissues marked 'Within normal limits':				
			22-Jul-03	Adrenal Glands Aorta Brain Cecum Colon Duodenum Epididymides Esophagus Eyes Femur Femoral Marrow Heart Ileum Jejunum Kidneys Lacrimal gland Larynx: V-SM-G Larynx: V-DVTC Liver Mammary-protoc Mediastinal LN Mesenteric LN Nerve Nose/Turb Sec Nose/Turb Sec 2 Nose/Turb Sec 3 Nose/Turb Sec 4 Optic nerve Pancreas Parathyroid Pituitary gland Prostate Rectum/Low Colon Salivary glands Seminal vesicles Skin-protocol Skeletal muscle Cervical SC Thoracic SC Lumbar SC Spleen Sternum Sternal Marrow Stomach Testes Thymus Thyroid gland Trachea Urinary bladder Zymbal's gland				
4214	М	4/1	22-Jul-03	Within normal limits				
4215	М	4/1	22-Jul-03	Within normal limits				

Page 965 Printed: 10-Sep-03

Version 4.2.2

Page: 5

Huntingdon Life Sciences Princeton Research Center East Millstone, New Jersey

Raw Data Listing of Gross Observations with Modifiers Study number: 036143

Page 966
Printed: 10-Sep-03
Page: 6
Version 4.2.2

Animal		Group/	Date data	
number	Sex	Subgroup	taken	Tissue / Observation(s) Locator, Color, General, Measurements, Severity levels
4216	М	4/1	23-Jul-03	Within normal limits
4217	М	4/1	23-Jul-03	Within normal limits
4218	М	4/1	23-Jul-03	Within normal limits
4219	М	4/1	23-Jul-03	Within normal limits
4220	M	4/1	23-Jul-03	Within normal limits
1711	F	1/1	22-Jul-03	Within normal limits
1712	F	1/1	22-Jul-03	Within normal limits
1713	F	1/1	22-Jul-03	Within normal limits
1714	F	1/1	22-Jul-03	Within normal limits
1715	F	1/1	22-Jul-03	Within normal limits
1716	F	1/1	23-Jul-03	Within normal limits
1717	F	1/1	23-Jul-03	Within normal limits
1718	F	1/1	23-Jul-03	Within normal limits
1719	F	1/1	23-Jul-03	Extremity Hair thin/ absent, Both forepaws, , , Severe Tissues marked 'Within normal limits':
			. 23-Jul-03	Adrenal Glands Aorta Brain Cecum Colon Duodenum Esophagus Eyes Femur Femoral Marrow Heart Ileum Jejunum Kidneys Lacrimal gland Larynx: V-SM-G Larynx: V-DVTC Liver Lungs Mammary-protocot Mediastinal LN Mesenteric LN Nerve Nose/Turb Sec 1 Nose/Turb Sec 2 Nose/Turb Sec 3 Nose/Turb Sec 4 Optic nerve Ovaries Pancreas Parathyroid Pituitary gland Rectum/Low Colon Salivary glands Skin-protocol Skeletal muscle Sternum Sternal Marrow Stomach Thymus Thyroid gland Trachea Urinary bladder Uterus

Huntingdon Life Sciences Princeton Research Center East Millstone, New Jersey Terminal Sacrifice

Raw Data Listing of Gross Observations with Modifiers Study number: 036143

Page 967
Printed: 10-Sep-03
Page: 7
Version 4.2.2

Animal number	Sex	Group/ Subgroup	Date data taken	Tissue / Observation		rity levels	ements,
1720	F	1/1	23-Jul-03	Within normal limit	s		
2711	F	2/1	22-Jul-03	Skin-protocol Hair Thin/Absent, Tissues marked 'Wit	Abdominal, , , ,		
			22-Jul-03 .	Adrenal Glands Colon Femur Jejunum Larynx: V-DVTC Mediastinal LN Nose/Turb Sec 2 Ovaries Rectum/Low Colon Thoracic SC Sternal Marrow Trachea	Aorta Duodenum Femoral Marrow Kidneys Liver Mesenteric LN Nose/Turb Sec 3 Pancreas	Brain Esophagus Heart Lacrimal gland Lungs Nerve Nose/Turb Sec 4 Parathyroid Skeletal muscle Spleen Thymus Uterus	Cecum Eyes Ileum Larynx: V-SM-G Mammary-protocol Nose/Turb Sec 1 Optic nerve Pituitary gland Cervical SC Sternum Thyroid gland Zymbal's gland
2712	F	2/1	22-Jul-03 22-Jul-03	Tissues marked 'Wit Adrenal Glands Colon Femur Jejunum Larynx: V-DVTC Mesenteric LN Nose/Turb Sec 3 Pancreas Salivary glands Thoracic SC	chin normal limits Aorta Duodenum Femoral Marrow Kidneys Liver Nerve Nose/Turb Sec 4 Parathyroid Skin-protocol Lumbar SC	Brain Esophagus Heart Lacrimal gland Mammary-protocol Nose/Turb Sec 1 Optic nerve Pituitary gland Skeletal muscle Spleen	Cecum Eyes Ileum Larynx: V-SM-G Mediastinal LN Nose/Turb Sec 2 Ovaries Rectum/Low Color Cervical SC Sternum
2713	F	2/1	22-Jul-03	Sternal Marrow Trachea Within normal limit	Stomach Urinary bladder	Thymus Uterus	Thyroid gland Zymbal's gland
2714	F	2/1	22-Jul-03	Within normal limit	s		
2715	F	2/1	22-Jul-03	Within normal limit	s		
2716	F	2/1	23-Jul-03	Within normal limit	s		
2717	F	2/1	23-Jul-03	. Within normal limit	S		

Huntingdon Life Sciences Princeton Research Center East Millstone, New Jersey Terminal Sacrifice

Raw Data Listing of Gross Observations with Modifiers Study number: 036143

Printed: 10-Sep-03

Page: 0	
Version	4.2.2

Page 968

Animal	Group/	Date data	The state of the s
number Se	x Subgroup	taken	Tissue / Observation(s) Locator, Color, General, Measurements, Severity levels
2718 F	2/1	23-Jul-03	Within normal limits
2719 F	2/1	23-Jul-03	Within normal limits
2720 F	2/1	23-Jul-03	Within normal limits
3711 F	3/1	22-Jul-03	Within normal limits
3712 F	3/1	22-Jul-03	Within normal limits
3713 F	3/1	22-Jul-03 22-Jul-03	Thymus Discolored, Right lobe, Red, , , Slight Tissues marked 'Within normal limits': Adrenal Glands Aorta Brain Cecum
		22-041-03	Colon Duodenum Esophagus Eyes Femur Femoral Marrow Heart Ileum Jejunum Kidneys Lacrimal gland Larynx: V-SM-G Larynx: V-DVTC Liver Lungs Mammary-protoc Mediastinal LN Mesenteric LN Nerve Nose/Turb Sec Nose/Turb Sec 2 Nose/Turb Sec 3 Nose/Turb Sec 4 Optic nerve Ovaries Pancreas Parathyroid Pituitary glan Rectum/Low Colon Salivary glands Skin-protocol Skeletal muscl Cervical SC Thoracic SC Lumbar SC Spleen Sternum Sternal Marrow Stomach Thyroid gland Trachea Urinary bladder Uterus Zymbal's gland
3714 F	3/1	22-Jul-03	Within normal limits
3715 F	3/1	22-Jul-03	Within normal limits
3716 F	3/1	23-Jul-03	Within normal limits
3717 F	3/1	23~Jul-03	Within normal limits
3718 F	3/1	23~Jul-03	Within normal limits
3719 F	3/1	23-Jul-03	Within normal limits
3720 F	3/1	23-Jul-03	Within normal limits
4711 F	4/1	22-Jul-03	Within normal limits
4712 F	4/1	22-Jul-03	Within normal limits

Page 969
Gross Observations with Modifiers Printed: 10-Sep-03

Page: 9

Version 4.2.2

Raw Data Listing of Gross Observations with Modifiers Study number: 036143

Huntingdon Life Sciences

4720 F

4/1

Princeton Research Center

East Millstone. New Jersey

Terminal Sacrifice Animal Group/ Date data Tissue / Observation(s) Locator, Color, General, Measurements, number Sex Subgroup taken Severity levels Within normal limits 4713 F 4/1 22-Jul-03 4714 F 4/1 Lungs 22-Jul-03 Discolored, All lobes, Red, Foci, </= 0.1 cm, Slight Tissues marked 'Within normal limits': 22-Jul-03 Adrenal Glands Aorta Brain Cecum Esophagus Eves Colon Duodenum Ileum Femoral Marrow Heart Femur Larynx: V-SM-G Jejunum Kidneys Lacrimal gland Mammary-protocol Mediastinal LN Liver Larynx: V-DVTC Mesenteric LN Nerve Nose/Turb Sec 1 Nose/Turb Sec 2 Optic nerve Ovaries Nose/Turb Sec 3 Nose/Turb Sec 4 Pituitary gland Rectum/Low Colon Pancreas Parathyroid Skin-protocol Skeletal muscle Cervical SC Salivary glands Sternum Thoracic SC Lumbar SC Spleen Sternal Marrow Stomach Thymus Thyroid gland Uterus Zymbal's gland Trachea Urinary bladder 4715 F 4/1 22-Jul-03 Within normal limits 23-Jul-03 Within normal limits 4716 F 4/1 4717 F 23-Jul-03 Within normal limits 4/1 4718 F 4/1 23-Jul-03 Within normal limits 23-Jul-03 Within normal limits 4719 F 4/1

Within normal limits

23-Jul-03 .

	Equipment List	Appendix I

Exposure Chamber

1000-Liter glass and stainless steel chamber (Wahmann).

Compound Generator

Butane cylinder (MG Industries).

Flowmeters

Top $\mathsf{Trak}^{\mathsf{TM}}$ Mass Flow Meter, sizes 0-100 sccm, 0 - 1 and 0 - 10 Lpm, Model 821-1 (Sierra Instruments).

Flowmeter, size 0 - 20 Lpm (Dwyer®).

Pressure Gauges

MG Industries backpressure gauges, P/N 10206 and 10201.

Regulator

MG Industries, Series 300.

Valve

Metering Valve, Model SS-4L Series (Nupro® Co.).

Tubina

Teflon® size 1/4".

Plastic, size 1/4" and 1/2" (Norton, Baxter).

Stainless steel, size 1/2".

Vacuum Pump

Thomas Industries Inc., Model 707CM 50.

GAST® backpressure gauge, Model NA.

Air Analyzer

MIRAN® 1A-CVF Ambient Air Analyzer (Wilks) with a Cole Parmer Strip Chart Recorder, Model 201, and a Micronta® LCD Benchtop Digital Multimeter No. 22-195.

Balston® Microfibre™ Disposable Filter Unit, Grade DQ, was attached in-line.

Gas-tight syringes, size 0 - 1, 0 - 5 and 0 - 100 mL (Hamilton).

Huntingdon Life Sciences	03-6143	Page 971
		Final Report
	Equipment List	Appendix I

Particle Sizer

TSI Aerodynamic Particle Sizer, Model 331001 and a DELL computer, Model 486P/25, equipped with an Epson LQ-570+ Dot matrix printer, Model P630B.

Environmental Monitoring

VWR Temperature and Humidity Gauge.

Oxygen/Gas Analyzer, Model 1214S (Gastech).

Digital Sound Level Meter, Model 840029 (SPER Scientific).

Photometer 1 Light Meter (Quantum Instruments).

Chamber Air Flow

Dwyer[®] Magnehelic[®] gauge, calibrated prestudy with Side Trak[™] III, with Digital Meter, Model 831-N2 (Sierra Instruments Inc.).

Chamber Static Pressure

Dwyer[®] Magnehelic[®] gauge (Dwyer[®] Instruments Inc.); calibrated prestudy with a Dwyer[®] Mark II Manometer, Model 25 (Dwyer[®] Instruments Inc.).

 MIRAN [®] Calibration	Appendix J

Methodology for Butane

Settings: The instrument settings for the unit are summarized below:

Wavelength, microns	10.3
Pathlength, dial setting	4.87
Slit width, mm	1
Range, absorbance	1
Response, seconds	1
Gain	High
Chart speed, cm/min	1
Chart volts	1

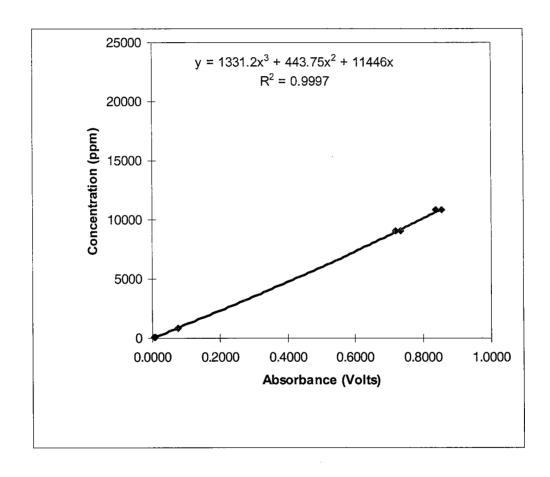
<u>Calibrations:</u> The MIRAN® was turned on and allowed to warm up for approximately 10 minutes. The cell was flushed with room air for approximately one minute. The loop was closed, the unit was zeroed and the calibration series was performed as shown below. The resultant data were plotted to obtain a calibration curve. Each observer used a separate syringe for calibration.

Injection	Calculated	Absorbance			
Volume	Concentration ¹	Operator 1	Operator 2	Average	
(µL)	(ppm)	(volts)	(volts)	(volts)	
390	69	0.0053	0.0060	0.0057	
510	90	0.0085	0.0087	0.0086	
5000	887	0.0778	0.0763	0.0771	
51,000	9043	0.719	0.734	0.727	
61,000	10816	0.837	0.854	0.846	

¹Calculated Conc. (ppm) = $\frac{\text{Volume injected }(\mu L)}{5.64L}$

where: 5.64L = volume of MIRAN® closed-loop

AADAN® O III (A 15 I
MIRAN [®] Calibration	Appendix J


<u>Calibration Checks:</u> A three-point calibration check of the MIRAN® was performed prior to each exposure. The parameters are shown below:

Injection Volume	Calculated Concentration	Expected Absorbance Reading	Acceptable Absorbance Range
(µL)	(ppm)	(volts)	(volts)
510	90	0.0086	0.0073 - 0.0099
5000	887	0.0771	0.0655 — 0.887
51000	9043	0.727	0.618 - 0.836

The absorbance was recorded after each injection. The absorbance was considered satisfactory if it was within 15% of the original calibration series. If the absorbance value fell outside the 15% range, the injection was rechecked as follows. The volume for the value that was out of range was reinjected twice. The closer pair of the three injections were averaged and the results were compared to the original curve. If the average of the pair was within the 15% range, the original was accepted. If the value of the average was outside the 15% range, the Study Director decided if a new graph was to be prepared.

MIRAN [®] Calibration	Appendix J

Calibration Curve for Butane

Chamber Distribution Results	Appendix K

Group (target)	Date	Port	IR Conc (ppm)	Ratio to H-1
2 (90 ppm)	2 July 2003	H-1 H-2 H-7	90.5 93.9 96.2	1.00 1.04 1.06
3 (900 ppm)	2 July 2003	H-8 H-1 H-2 H-7	85.9 853 745 853	0.95 1.00 0.87 1.00
	3 July 2003	H-8 H-1 H-2	853 724 693	1.00 1.00 0.96
4 (9000 ppm)	2 July 2003	H-1 H-2 H-7 H-8	9200 9210 9220 9250	1.00 1.00 1.00 1.01

Chamber and Exposure Room	
Environmental Monitoring	Appendix L

Interval	Location	Test Substance (ppm)	Light (Ft Candles)	Noise (dB)	Oxygen (%)	Particle Sizing (mg/m³)ª
Pretest	Room	0	34.7	61.0	NM	
7 101001	Group 1	0	NM	NM	21	2.99 x 10 ⁻³
	Group 2	0	NM	NM	21	1.55 x 10 ⁻³
	Group 3	0	NM	NM	21	2.70 x 10 ⁻³
	Group 4	0	NM	NM	21	1.77 x 10 ⁻³
Exposure	Room	0	34.7	63.3	NM	
Day 1	Group 1	0	NM	NM	_21	
	Group 2	88	NM	NM	21	
	Group 3	878	NM	NM	21	
	Group 4	8998	NM	NM_	21	
Exposure	Room	0	33,9	61.2	NM	
Day 8	Group 1	0	NM	NM	21	
	Group 2	92	NM	NM	21	_
	Group 3	897	NM	NM	21	
	Group 4	9103	NM	NM	21	
Exposure	Room	0	35.2	61.1	NM	_
Day 14	Group 1	0	NM	NM	21	<u>]</u>
	Group 2	93	NM	NM	21]
	Group 3	925	NM	NM	21]
	Group 4	9233	NM	NM	21	-

NM = Not measured.

^aPretest results presented. For on-test results, see CMR (Appendix A).

Appendix M

PROTOCOL

BUTANE

A 2-WEEK RANGE-FINDING INHALATION TOXICITY STUDY IN THE RAT VIA WHOLE-BODY EXPOSURES

CONFIDENTIAL

HLS Study No.:

03-6143

Protocol No.:

Final

Date:

30 June 2003

PROTOCOL SIGNATURES / PREFACE

(Confidential Information - to be distributed on a need-to-know basis)

Study Title:

Butane: A 2-Week Range-Finding Inhalation Toxicity

30 June 2003

Study in the Rat via Whole-Body Exposures

HLS Study No.:

03-6143

This is the Final Protocol. It has been reviewed and approved by:

Gary M. Hoffman, B.A., DABT

Study Director

Huntingdon Life Sciences (HLS) Address: 100 Mettlers Road

East Millstone, NJ 08875-2360

Phone No.: 732-873-2550 x2920

Fax No.: 732-873-3992

Email: hoffmang@princeton.huntingdon.com

Thomas M. Gray, M.S., D.A.B.1.

Sponsor Representative

American Petroleum Institute (API)

Address: 1

1220 L Street, Northwest

Washington, D.C. 20005-4070

Phone No.: 202-682-8480 Fax No.: 202-682-8270

Email: grayt@api.com

TABLE OF CONTENTS

I.	INTRODUCTION	L
2.	STUDY PERSONNEL	1
3.	PROPOSED STUDY DATES	1
4.	EXPERIMENTAL DESIGN	2
4.1	. STUDY SUMMARY	2
4.2		
4.3		
4.4		
4.5		
5.	TEST SUBSTANCE	3
5.1	. TEST SUBSTANCE	3
5.2		
5.3		
5.4		
5.5	EXPOSURE CONCENTRATION DETERMINATION	4
5.6	. PARTICLE SIZE DISTRIBUTION ANALYSIS	5
5.7	. CHAMBER AND EXPOSURE ROOM ENVIRONMENT	5
5.8	SUMMARY OF CHAMBER ACTIVITY	5
5.9		
5.1	0. UNUSED TEST SUBSTANCE	6
6.	TEST ANIMALS	6
6.1	. SPECIES	6
6.2		
6.3	. ANIMAL REQUIREMENTS/SPECIFICATIONS	7
6.4	. ACCLIMATION PERIOD	7
6.5	. ANIMAL CARE AND HUSBANDRY	7
7.	IN-LIFE EVALUATIONS	9
7.1	. CLINICAL OBSERVATIONS	9
7.2	BODY WEIGHTS	10
7.3	. FEED CONSUMPTION	10
8.	POSTMORTEM EVALUATIONS	10
8.1	. MACROSCOPIC PATHOLOGY	10
8.2	. METHOD OF EUTHANASIA	11
8.3		
8.4		
8.5	. MICROSCOPIC PATHOLOGY EVALUATIONS	12

9.	Al	RCHIVING OF RECORDS AND SPECIMENS	12
10.	ST	FATISTICAL ANALYSIS	12
10.	1.	ITEMS TO BE ANALYZED	12
10.	2.	PROCEDURES	12
11.	RJ	EPORTING	14
11.	1.	STATUS REPORTS	14
11.	2.	FINAL REPORT	14
12.	RI	EGULATORY REFERENCES	15
12.	1.	TESTING GUIDELINES	15
12.	2.	GOOD LABORATORY PRACTICES	15
12.	3.	ANIMAL WELFARE ACT COMPLIANCE	15
12.	4.	INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE (IACUC)	16
13.	QI	UALITY ASSURANCE MONITORING	16
14.	ΑI	LTERATION IN STUDY DESIGN	16

Huntingdon Life Sciences

Study No. 03-6143

Page 1 Final Protocol

1. INTRODUCTION

HLS Study No.

03-6143

Study Title

Butane: A 2-Week Range-Finding

Inhalation Toxicity Study in the Rat via

Whole-Body Exposures

Testing Facility

Huntingdon Life Sciences

100 Mettlers Road P.O. Box 2360

East Millstone, NJ 08875-2360

Purpose

This study is designed to provide a preliminary assessment of the toxicity of the test substance when administered via whole-body inhalation to rats for 2 weeks in order to determine exposure levels for a subsequent OECD 422 inhalation study

03-4242.

2. STUDY PERSONNEL

Study Director

Gary M. Hoffman, B.A., DABT

Alternate Contact

Keith P. Hazelden, BSc, CBiol, MIBiol

Director of Reproductive Toxicology

x2590

Additional personnel will be documented in the study file and presented in the final report.

3. PROPOSED STUDY DATES

Study Initiation

Date Study Director signs protocol

Receipt of Test Animals

24 June 2003

First Day of Treatment

8 July 2003 (Experimental Start)

Last Day of Treatment

22 July 2003

Necropsy - Termination

22-23 July 2003

Experimental Completion

23 July 2003 (Date of last data collection)

Submission of Audited Draft Report

17 October 2003

Study Completion

Date final report is signed by Study

Director

4. EXPERIMENTAL DESIGN

4.1. STUDY SUMMARY

Group	Test Substance	Exposure Level ^a	Number	of Animals ^b
		ppm	Males	Females
1	Air Control	0	10	10
2	Butane	90	10	10
3	Butane	900	10	10
4	Butane	9000	10	10

^aExposures will be 6 hours per day for 7 consecutive days per week for 2 weeks for a total of at least 14 exposures. Exposure levels are expressed as ppm of test substance. The exposures will be conducted via whole-body exposure.

The first day of exposures will be defined as Day 0 of the study.

^bComplete postmortem evaluations will be performed on animals at termination of the study and on animals which are found dead or euthanized in a moribund condition during the course of the study.

Page 3
Final Protocol

4.2. JUSTIFICATION FOR ROUTE, DURATION AND FREQUENCY

The inhalation route is one of the potential routes of human exposure to this test substance. The duration of the study and frequency of exposures are considered to be the minimum necessary for determining exposure levels for a subsequent OECD 422 Study 03-4242.

4.3. JUSTIFICATION FOR TEST ANIMAL SELECTION

The rat is an animal model commonly utilized in toxicity studies as recommended in OECD and EPA guidelines. In addition, a historical database is available for comparative evaluation.

4.4. JUSTIFICATION FOR NUMBER OF ANIMALS

The number of animals in the protocol is considered to be the minimum necessary for scientific and statistical reasons in order to evaluate the data with sufficient confidence levels.

4.5. JUSTIFICATION FOR EXPOSURE LEVEL SELECTION

The exposure levels were selected based on prior results of minimal toxicity up to 1% (10000 ppm). Therefore, the high exposure level was established (for safety reasons) as 50% of the lower explosion limit (1.8% = 18000 ppm) for the test substance.

5. TEST SUBSTANCE

5.1. TEST SUBSTANCE: BUTANE

Test Substance Category: industrial gas

Description, lot number, storage, expiration date (if available) and handling procedures, as well as other pertinent information will be documented in the study data. The Testing Facility will purchase the test substance from a Sponsor approved vendor (MG Industries, Malvern PA). The test substance will be stored (ambient conditions) in an outside solvent shed except when in use in the inhalation laboratory. The test substance will be handled as a flammable gas.

5.2. IDENTIFICATION OF TEST SUBSTANCE

Unless otherwise noted, the identity, strength, purity, composition, stability and method of synthesis, fabrication and/or derivation of each batch of the test substance will be documented by the Supplier before its use in the study. This documentation will be maintained by the Supplier.

Page 4 Final Protocol

The Testing Facility will ensure that the location of the documentation of fabrication is provided in the report. Purity of the test substance will also be determined by the Testing Facility by assaying by GC before the study.

5.3. ARCHIVAL SAMPLES

An archival sample from each lot of test substance will be taken and stored in the Archives of the Sponsor (EPL Archives, Inc., 45610 Terminal Drive, Sterling, VA 20166). If multiple studies are conducted with the same test substance, a common archival sample may be taken and appropriately labeled.

5.4. ADMINISTRATION OF TEST SUBSTANCE

The test substance will be administered by whole-body inhalation exposure. The test substance will be administered as a gas (depending on the physical properties of the test substance) in the breathing air of the animals. The test atmosphere will be generated by an appropriate procedure determined during pre-study trials. The trials will be performed (at least two 6-hour periods) to evaluate the optimal set of conditions and equipment to generate a stable and uniform atmosphere at the target exposure levels. The method will be described in the raw data of the study and in the report.

The whole-body exposure chambers will each have a volume of approximately 1000 liters. Each chamber will be operated at a minimum flow rate of 200 liters per minute. The final airflow will be set to provide at least one air change in 5.0 minutes (12 air changes/hour) and a T_{99} equilibrium time of at most 23 minutes. This chamber size and air flowrate is considered adequate to maintain the animal loading factor below 5% and the oxygen level at 19% or higher. At the end of the exposure, all animals will remain in the chamber for a minimum of 30 minutes. During this time the chamber will be operated at approximately the same flow rate using clean air only.

5.5. EXPOSURE CONCENTRATION DETERMINATION

A nominal exposure concentration will be calculated daily, if possible. The flow of air through the chamber will be monitored using appropriate calibrated equipment. The test substance consumed during the exposure will be divided by the total volume of air passing through the chamber (volumetric flow rate times total exposure time) to give the nominal concentration.

Page 5 Final Protocol

During each exposure, measurements of airborne concentrations of test substance in the animal's breathing zone will be performed at least four times using an appropriate sampling procedure and infrared spectrophotometric analytical procedure. Also prior to initiation of animal exposures, additional samples will be taken to determine the distribution of the test substance in the exposure chamber.

If more than the normal amount of trial time is required because of test substance generation or monitoring problems (80 technician hours), the Sponsor will be consulted prior to additional trials (additional cost).

5.6. PARTICLE SIZE DISTRIBUTION ANALYSIS

During each exposure, particle size determinations will be performed using a TSI Aerodynamic Particle Sizer to characterize the aerodynamic particle size distribution of any aerosol present.

5.7. CHAMBER AND EXPOSURE ROOM ENVIRONMENT

Chamber temperature, humidity, airflow rate and static pressure will be monitored continuously and recorded every 30 minutes during exposure. Chamber temperature and relative humidity will be maintained, to the maximum extent possible, between 20 to 24°C and 40 to 60%, respectively. Chamber oxygen levels (maintained at least 19%) will be measured pretest and at the beginning, middle and end of the study.

Air samples will be taken in the vapor generation area pretest and at the beginning, middle and end of the study. Light (maintained approximately 30-40 foot-candles at 1.0 meter above the floor) and noise levels (maintained below 85 decibels) in the exposure room will be measured pretest and at the beginning, middle and end of the study.

5.8. SUMMARY OF CHAMBER ACTIVITY

The minimum frequency of chamber activity is summarized below:

Page 6 Final Protocol

Activity	Frequency/chamber
Measured Test Substance Concentration	4X/day
Particle Size	1X/day
Temperature	13X/day
Relative Humidity	13X/day
Airflow Rate & Static Pressure	13X/day
Nominal Test Substance Concentration	1X/day
Rotation Pattern of Exposure Cages	1X/day
Loading/Unloading Verification	1X/day

5.9. FREQUENCY AND DURATION OF ADMINISTRATION

The test substance will be administered for 6 hours per day for 7 consecutive days per week for 2 weeks for a total of at least 14 exposures. Test substance administration will continue through the day prior to necropsy.

5.10. UNUSED TEST SUBSTANCE

The unused portion of the test substance as well as any empty test substance containers will be returned to the Supplier following completion of the in-life phase of the final study with this test substance.

6. TEST ANIMALS

6.1. SPECIES

Albino Rats (Outbred) Vaf/Plus® Sprague-Dawley - derived (CD®) Crl: CD (SD) IGS BR

6.2. SUPPLIER

Charles River Laboratories

Documentation of the specific breeding facility will be maintained in the study file.

Page 7
Final Protocol

6.3. ANIMAL REQUIREMENTS/SPECIFICATIONS

6.3.1. NUMBER OF ANIMALS ON STUDY

<u>Total</u>	<u>Males</u>	<u>Females</u>
80	40	40

6.3.2. AGE

Young adult (approximately 6 weeks at receipt; approximately 8 weeks (and no more than 9 weeks) at initiation of exposures.

6.3.3. WEIGHT

Approximately 200 to 300 grams (males) and 150 to 250 grams (females) at first exposure. Animals outside of this range may be used at the discretion of the Study Director.

6.4. ACCLIMATION PERIOD

Approximately 2 weeks; all animals will be checked for viability twice daily. Prior to assignment to study, all animals will be examined to ascertain suitability for study.

6.5. ANIMAL CARE AND HUSBANDRY

6.5.1. FACILITIES MANAGEMENT/ANIMAL HUSBANDRY

Currently acceptable practices of good animal husbandry will be followed, e.g., *Guide for the Care and Use of Laboratory Animals*; National Academy Press, 1996. Huntingdon Life Sciences Inc. is fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC).

6.5.2. VETERINARY CARE

Animals will be monitored by the technical staff for any conditions requiring possible veterinary care. If any such conditions are identified, a staff veterinarian will be notified for an examination and evaluation. Animals will be treated as outlined in the Animal Welfare Act Compliance section of this protocol.

6.5.3. ENVIRONMENTAL CONDITIONS

Light/Dark Cycle

Page 8 Final Protocol

Twelve hour light/dark cycle provided via automatic timer.

Temperature

Temperature will be monitored in accordance with Testing Facility SOPs to ensure that the desired range of 18 to 26°C is maintained to the maximum extent possible.

Humidity

Humidity will be monitored in accordance with Testing Facility SOPs to ensure that the desired range of 30 to 70% is maintained to the maximum extent possible.

6.5.4. HOUSING

Animals will be individually housed in suspended, stainless steel wire mesh cages during the study.

6.5.5. FEED

Certified Rodent Diet, No. 5002; (Meal) (PMI Nutrition International, St. Louis, MO) ad libitum.

6.5.6. WATER

Elizabethtown Water Company, Westfield, NJ; ad libitum, via automated watering system.

6.5.7. FEED ANALYSIS

Analytical certification of batches of feed provided by the manufacturer will be maintained on file at the Testing Facility. There are no known contaminants in the feed which are expected to interfere with the objectives of this study.

6.5.8. WATER ANALYSIS

Water analyses are conducted by Elizabethtown Water Company to assure that water meets standards specified under the EPA Federal Safe Drinking Water Act Regulations (40 CFR Part 141). Water analysis, provided by the supplier, will be maintained on file at the Testing Facility. In addition, chemical and microbiological analyses are conducted biannually on water samples collected from representative rooms in this facility. Results are maintained on file at the Testing Facility. There are

Page 9 Final Protocol

no known contaminants which are expected to interfere with the objectives of this study.

6.5.9. ANIMAL ASSIGNMENT

More animals than required for the study will be purchased and acclimated. Animals considered suitable for study on the basis of pretest physical examinations, body weight data and any other pretest evaluations, will be randomly assigned to control or treated groups in an attempt to equalize mean group body weights. Individual weights of animals placed on test shall be within $\pm 20\%$ of the mean weight for each sex. Disposition of all animals not utilized in the study will be maintained in the study file.

6.5.10. IDENTIFICATION

Each animal will be assigned a temporary identification number upon receipt. After selection for study, each animal will be eartagged with a number assigned by the Testing Facility. This number plus the study number will comprise the unique animal number for each animal. If the tag is lost, it will be replaced. Each cage will be provided with a cage card which will be color coded for exposure level identification and will contain the study number and animal number.

6.5.11. ANIMAL HUSBANDRY/EXPOSURE

Housing:

Individually in cages.

Feed:

None.

Water:

None.

7. IN-LIFE EVALUATIONS

7.1. CLINICAL OBSERVATIONS

7.1.1. VIABILITY CHECKS (CAGE-SIDE)

Observations for mortality and general condition will be made at least twice daily (once in the morning and once in the afternoon). Animals in poor health or in a possible moribund condition will be identified for further monitoring and possible euthanasia.

Page 10 Final Protocol

7.1.2. PHYSICAL EXAMINATIONS

In-Chamber: All animals will be observed as a group at least once during each exposure.

Out-of-Chamber: Each animal will be removed from its cage and examined at least once pretest and once per week during the study period. Examinations will include observations of general condition, skin and fur, eyes, nose, oral cavity, abdomen and external genitalia, occurrence of secretions and excretions, and autonomic activity (e.g., lacrimation, piloerection, pupil size, unusual respiratory pattern). Changes in gait, posture and response to handling as well as the presence of clonic or tonic movements, stereotypy (e.g., excessive grooming, repetitive circling) or bizarre behavior (e.g., self-mutilation, walking backward) will be recorded.

7.2. BODY WEIGHTS

Non-fasted body weights for each animal will be recorded at least once pretest, on the first day of exposures and once per week during the study period. Fasted weights will be obtained prior to necropsy.

7.3. FEED CONSUMPTION

Feed consumption will be measured (weighed) during the week prior to treatment initiation and once per week during the study period. Feed will be available without restriction 7 days/week except during exposures. Animals will be presented with weighed feeders at the scheduled intervals. After at least 5 days, the feeders will be reweighed and the resulting weight subtracted from the initial feeder weight to obtain the grams of feed consumed per animal per day. The grams consumed per kilogram of body weight per day will then be calculated for each animal.

8. POSTMORTEM EVALUATIONS

8.1. MACROSCOPIC PATHOLOGY

A complete macroscopic examination will be performed on all animals, including animals euthanized in a moribund condition or found dead; all abnormal observations will be recorded. The necropsy will consist of a careful examination of the external surface of the body, all orifices and the cranial, thoracic and abdominal cavities and their contents. Special attention should be paid to the organs of the reproduction system.

Page 11 Final Protocol

8.1.1. MORIBUND ANIMALS

Animals showing signs of severe debility, particularly if death appears imminent, will be humanely euthanized to prevent loss of tissues through autolysis.

8.1.2. TERMINAL NECROPSY

Necropsy will be performed on 10 animals/sex/group after animals have been treated for at least 14 days. Necropsy schedules will be established in order to assure that approximately equal numbers of males and females from each group will be examined at similar times of the day of necropsy.

8.2. METHOD OF EUTHANASIA

Exsanguination following carbon dioxide inhalation.

8.3. ORGAN WEIGHTS

Organs indicated below will be taken from all survivors at the scheduled necropsies, weighed, recorded and organ/body and organ/brain weight ratios calculated. Organs will not be weighed for animals found dead or euthanized in a moribund condition during the course of the study. Prior to weighing, all organs will be carefully dissected and properly trimmed to remove fat and other contiguous tissues in a uniform manner. Organs will be weighed as soon as possible after dissection to avoid drying. Paired organs will be weighed together.

adrenals	liver	seminal vesicles
brain	lungs	spleen
epididymides	ovaries	testes
heart	pituitary	thymus
kidneys		uterus

8.4. TISSUE PRESERVATION

Tissues listed in Appendix A will be obtained at necropsy and preserved for all animals.

Eyes – glutaraldehyde/paraformaldehyde initially and then 10% neutral buffered formalin

Testes – modified Davidson's solution initially and then 10% neutral buffered formalin

All other tissues - 10% neutral buffered formalin

Page 12 Final Protocol

Note: Lungs and urinary bladder will be infused with formalin to ensure fixation.

8.5. MICROSCOPIC PATHOLOGY EVALUATIONS

No examinations are required. Authorization will be obtained from the Sponsor prior to performing any examinations. If tissues are examined, standard stains (hematoxylin and eosin) will be used. Special stains may be employed on selected tissues to aid in making a diagnosis at the discretion of the Study Pathologist. Special stains may also be employed at the request of the Sponsor (additional cost).

9. ARCHIVING OF RECORDS AND SPECIMENS

All data documenting experimental details and study procedures and observations will be recorded and maintained as raw data. At the completion of the study, all reports, raw data, preserved archival specimens and retained samples will be maintained in the Testing Facility's Archives for a period of 1 year after submission of the signed final report.

The Sponsor will be contacted in order to determine the final disposition of these materials. The Sponsor is responsible for all cost associated with the storage of these materials beyond one year from the issuance of the final report and for any costs associated with the shipment of these materials to the Sponsor or to any other facility designated by the Sponsor.

10. STATISTICAL ANALYSIS

10.1. ITEMS TO BE ANALYZED

The following will be compared for control and test substance-treated groups.

mean body weight values
mean feed consumption values
mean terminal organ weights, organ/body and organ/brain weight ratios

10.2. PROCEDURES

Evaluation of equality of group means will be made by the appropriate statistical method, followed by a multiple comparison test if needed. Bartlett's test (Bartlett, 1937; Sokal and Rohlf, 1995) will be performed to determine if groups have equal variances. For all parameters except organ weights, if the variances are equal, parametric procedures will be used; if not, nonparametric procedures will be used. Organ weight data will be analyzed only by parametric methods. The parametric method

Page 13 Final Protocol

will be the standard one-way analysis of variance (ANOVA) using the F ratio to assess significance (Armitage, 1971; Dunlap and Duffy, 1975). If significant differences among the means are indicated, additional tests will be used to determine which means are significantly different from the control: Dunnett's (Dunlap et al., 1981; Dunnett, 1955, 1964), Williams (Williams, 1971, 1972), or Cochran and Cox's modified t-test (Cochran and Cox, 1959). The nonparametric method will be the Kruskal-Wallis test (Kruskal and Wallis, 1952, 1953) and if differences are indicated, Shirley's test (Shirley, 1977), Steel's test (Steel, 1959), or Pairwise Comparison with Bonferroni Correction (Games and Howell, 1976) will be used to determine which means differ from control. Bartlett's test for equality of variance will be conducted at the 1% significance level; all other statistical tests will be conducted at the 5% and 1% significance levels.

References for these procedures are:

Armitage, P. 1971. Statistical Methods in Medical Research. Oxford, UK: Blackwell Scientific Publications; Bartlett, M.S. 1937. Properties of sufficiency and statistical tests. Proceedings of the Royal Society, Series A, 160: 268-282; Cochran, W.G. and Cox, G.M. 1959. Experimental Designs, New York: John Wiley, pp. 100-102; Dunlap, W.P. and Duffy, J.A. 1975. Fortran IV Functions for Calculating Exact Probabilities Associated with Z, Chi-Square, T and F Values. Behav. Res. Methods and Instrumentations 7:59-60; Dunlap, W.P., Marx, M.S. and Agamy, G.G. 1981. Fortran IV functions for calculating probabilities associated with Dunnett's test. Behav. Res. Methods and Instrumentation 13: 363-366; Dunnett, C.W. 1955. A multiple comparison procedure for comparing several treatments with a control. Journal of the American Statistical Association 50: 1096-1121; Dunnett, C.W. 1964. New tables for multiple comparisons with a control. Biometrics 20-3: 482-491; Games, P.A. and Howell, J.F. 1976. Pairwise multiple comparison procedures with unequal n's and/or variances: a monte-carlo study. Journal of Educational Statistics 1: 113-125; Kruskal, W.H. and Wallis, W.A. 1952. Use of Ranks in one-criterion variance analysis. Journal of the American Statistical Association 47: 583-621; Kruskal, W.H. and Wallis, W.A. 1953. Errata for Kruskal-Wallis (1952) Journal of the American Statistical Association 48: 907-911; Shirley, E.A.C. 1977. A non-parametric equivalent of Williams' test for contrasting increasing dose levels of a treatment. Biometrics 33: 386-389; Sokal, R.R. and Rohlf, F.J. 1995. Biometry. 3rd Edition. San Francisco: W.H. Freeman pp. 369-371; Steel, R.G.D. 1959. A multiple comparison rank sum test: treatment versus control. Biometrics 15: 560-572.; Williams, D.A. 1971.

Page 14

Final Protocol

A test for differences between treatment means when several dose levels are compared with a zero dose control. Biometrics 27: 103-117; Williams, D.A. 1972. The comparison of several dose levels with a zero dose control. Biometrics 28: 519-531.

11. REPORTING

11.1. STATUS REPORTS

Periodic written (weekly) updates on study progress will be provided by the Study Director.

11.2. FINAL REPORT

One unbound hard copy and one electronic copy of a draft report will be submitted following termination of the study. After receipt and review of the Sponsor's comments, appropriate changes will be made and two hard copies and one electronic copy of a signed, final report will be issued. (Additional copies will be provided at additional cost). The report will minimally include:

Compliance Statement (including Sponsor signature line)

Quality Assurance Statement

Summary

Introduction

Experimental Design

Materials and Methods

Discussion of Study Results

Conclusion (including NOAEL statement, if applicable)

Tables of Exposure Data

Mortality Data

Individual animal termination history

Summary of daily animal observations (as appropriate)

Individual and summary tables of weekly physical examination data

Tables of mean and individual body weights

Tables of mean and individual feed consumption

Tables of mean and individual organ weights, organ/brain

and organ/body weight ratios

Individual and summary tables of macroscopic pathology findings

References for experimental methodology

Senior personnel participating in the study

Copy of study protocol and associated amendments

Page 15 Final Protocol

12. REGULATORY REFERENCES

12.1. TESTING GUIDELINES

This study is not designed to meet regulatory requirements. It is designed to provide preliminary toxicity data for the test substance in order to determine appropriate exposure levels for a subsequent OECD 422 inhalation study 03-4242.

12.2. GOOD LABORATORY PRACTICES

This study will be conducted in compliance with EPA Good Laboratory Practices as set forth in 40 CFR Part 792 (TSCA) and Organization for Economic Cooperation and Development (OECD) Good Laboratory Practices as set forth in ENV/MC/CHEM(98)17.

12.3. ANIMAL WELFARE ACT COMPLIANCE

This study will comply with all appropriate parts of the Animal Welfare Act Regulations: 9 CFR Parts 1 and 2 Final Rules, Federal Register, Volume 54, No. 168, August 31, 1989, pp. 36112-36163 effective October 30, 1989 and 9 CFR Part 3 Animal Welfare Standards; Final Rule, Federal Register, Volume 56, No. 32, February 15, 1991, pp. 6426-6505 effective March 18, 1991. The Sponsor should make particular note of the following:

- 1. The Sponsor's signature on this protocol documents that, for the study described, there are no generally accepted non-animal alternatives and the study does not unnecessarily duplicate previous experiments in regard to species, test substance, route of administration or duration of treatment.
- 2. All procedures used in this study have been designed to avoid discomfort, distress and pain to the animals. All methods are described in this study protocol or written laboratory standard operating procedures.
- 3. Any procedures outlined in this study which cause more than momentary or slight pain or distress to the animals will be performed with appropriate sedatives, analgesics or anesthetics unless the withholding of these agents is justified for scientific reasons, in writing by the Sponsor and the Study Director, in which case the procedure will continue for the minimum time necessary. Documentation of the justification for withholding treatment for pain

Page 16

Final Protocol

or distress and IACUC approval of the procedures will be made prior to study initiation on the IACUC Protocol Review Form.

- 4. Animals experiencing more than momentary or slight pain or distress due to test substance or injury or illness will be treated by the Testing Facility's veterinary staff with approved analgesics or agents to relieve pain after consultation with the Study Director and Sponsor. However, in emergency situations, the veterinary staff is authorized to administer emergency treatment as necessary. Any subsequent treatment or euthanasia will be administered after consultation with the Study Director. The Sponsor will be advised by the Study Director of all emergency situations in as timely a manner as possible.
- 5. Methods of euthanasia used during this study are in conformance with the above-referenced regulations.

12.4. INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE (IACUC)

The IACUC Protocol Review Subcommittee has reviewed this protocol and found it to be in compliance with all appropriate regulations.

13. QUALITY ASSURANCE MONITORING

The Huntingdon Life Sciences Quality Assurance Unit will monitor the facilities, equipment, personnel, methods, practices, records and controls used in this study to assure that they are in conformance with this protocol, company SOPs, and the appropriate Good Laboratory Practice requirements.

14. ALTERATION IN STUDY DESIGN

Alterations of this protocol may be made as the study progresses. No changes in the protocol will be made without the consent of the Sponsor. In the event that the Sponsor authorizes a protocol change verbally, such changes will be honored by the Testing Facility and will be followed by a written verification. All protocol modifications will be signed by the Study Director and a Sponsor representative. Any modifications potentially affecting animal welfare will also be signed by 2 members of the Institutional Animal Care and Use Committee prior to the modification's implementation.

APPENDIX A Tissues Preserved

Tissue	Preserved
adrenal gland	Х
aorta (thoracic)	X
bone (sternum/femur)	X
bone marrow (rib) a	X
brain (medulla/pons, cerebrum and cerebellum)	Х
epididymides	Х
esophagus	X
eye (with optic nerve)	х
heart	X
kidneys	X
large intestine (cecum, colon, and rectum)	X
lacrimal gland	X
larynx	X
liver	X
lungs (with mainstem bronchi)	X
lymph nodes (mediastinal and mesenteric)	X
mammary gland	X
muscle (biceps femoris)	X
nasopharyngeal tissue	X
nerve (sciatic)	Х
ovaries	х
pancreas	х
pituitary	X
prostate	х

Page 18 Final Protocol

Tissue	Preserved
salivary gland with submandibular lymph node	X
seminal vesicles	X
skin	X
small intestine (duodenum, jejunum, ileum)	X
spinal cord (cervical, thoracic, lumbar)	X
spleen	X
stomach	X
testes	X
thymic region	X
thyroid (with parathyroids)	X
trachea	X
urinary bladder	X
uterus (body/horns with cervix)	X
Zymbal's gland	X
gross lesions and tissue masses	X
target organs ^b	Х

^aBone marrow smears will be prepared. They will only be evaluated (Sponsor approval, additional cost) if needed.

^bTarget organs will be designated by the Study Director, Pathologist and/or Sponsor based on experimental findings.

Protocol Amendment No. 1

Study Title: Butane: A 2-Week Range-Finding Inhalation Toxicity Study in the Rat via Whole-Body Exposures

Changes

1. EXPOSURE CONCENTRATION DETERMINATION, page 4:

Revise: A nominal exposure concentration will be calculated daily, if possible. The flow of test substance into the chamber and the flow of air through the chamber will be monitored using appropriate calibrated equipment. The test substance consumed during the exposure will be divided by the total volume of air passing through the chamber (volumetric flow rate times total exposure time) to give the nominal concentration. The average test substance flow during the exposure will be divided by the average chamber airflow to give the nominal concentration.

2. TISSUE PRESERVATION, page 11:

Revise: Testes and epididymides – modified Davidson's solution initially and then 10% neutral buffered formalin

Reasons for Changes

- 1. Clarification of the procedure for calculating the nominal concentration for this gaseous test substance that is in cylinders too heavy to weigh before and after use.
- 2. Revision of the procedure for preservation of the epididymides.

Amendment approved by:	
LAND.	37 Ley 03
Gary M. Hoffman, B.A., DABT	Date
Study Director	
Money March	31 Auly 2003
Thomas M. Gray, M.S., DABT	B ate
Sponsor Representative	-

08:23am

Protocol Amendment No. 2

Study Title: Butane: A 2-Week Range-Finding Inhalation Toxicity
Study in the Rat via Whole-Body Exposures

Changes

1. Proposed Study Dates, page 1:

Revise: Receipt of Test Animals
First Day of Treatment

24 June 2003 (Experimental Start) 8 July 2003 (Experimental Start)

2. Identification of Test Substance, page 5:

Add:Purity of the test substance will also be determined by the Testing Facility by assaying by GC before the study. Stability of the test substance will also be determined by the Testing Facility by assaying by GC after the subsequent OECD 422 study 03-4242.

3. Animal Requirements/Specifications, page 7:

Add: Female rats will be nulliparous and non-pregnant.

4. Statististical Analysis/Procedures, page 12:

Revise: Evaluation of equality of group means will be made by the appropriate statistical method, followed by a multiple comparison test if needed. Bartlett's test (Bartlett, 1937; Sokal and Rohlf, 1995) will be performed to determine if groups have equal variances. For all parameters except organ weights, if the variances are equal, parametric procedures will be used; if not, nonparametric procedures will be used. Organ weight data will be analyzed only by parametric methods. The parametric method will be the standard oneway analysis of variance (ANOVA) using the F ratio to assess significance (Armitage, 1971; Dunlap and Duffy, 1975). If significant differences among the means are indicated, additional tests will be used to determine which means are significantly different from the control: Dunnett's (Dunlap et al., 1981; Dunnett, 1955, 1964), Williams (Williams, 1971, 1972), or Cochran and Cox's modified t-test (Cochran and Cox, 1959). The nonparametric method will be the Kruskal-Wallis test (Kruskal and Wallis, 1952, 1953) and if differences are indicated, Shirley's test (Shirley, 1977), Steel's test (Steel, 1959), or Pairwise Comparison with Bonferroni Correction (Games and Howell, 1976) will be used to determine which means differ from control. Bartlett's test for equality of variance will be conducted at the 1% significance level; all other statistical tests will be conducted at the 5% and 1% significance levels.

References for these procedures are:

Armitage, P. 1971. Statistical Methods in Medical Research. Oxford, UK: Blackwell Scientific Publications; Bartlett, M.S. 1937. Properties of sufficiency and statistical tests.

Protocol Amendment No. 2

Proceedings of the Royal Society, Series A, 160: 268-282; Cochran, W.G. and Cox, G.M. 1959. Experimental Designs, New York: John Wiley, pp. 100-102; Dunlap, W.P. and Duffy, J.A. 1975. Fortran IV Functions for Calculating Exact Probabilities Associated with Z, Chi-Square, T and F Values. Behav. Res. Methods and Instrumentations 7:59-60; Dunlap, W.P., Marx, M.S. and Agamy, G.G. 1981. Fortran IV functions for calculating probabilities associated with Dunnett's test. Behav. Res. Methods and Instrumentation 13: 363-366; Dunnett, C.W. 1955. A multiple comparison procedure for comparing several treatments with a control. Journal of the American Statistical Association 50: 1096-1121; Dunnett, C.W. 1964. New tables for multiple comparisons with a control. *Biometrics* 20-3: 482-491; Games, P.A. and Howell, J.F. 1976. Pairwise multiple comparison procedures with unequal n's and/or variances: a monte-carlo study. Journal of Educational Statistics 1: 113-125; Kruskal, W.H. and Wallis, W.A. 1952. Use of Ranks in one-criterion variance analysis. Journal of the American Statistical Association 47: 583-621; Kruskal, W.H. and Wallis, W.A. 1953. Errata for Kruskal-Wallis (1952) Journal of the American Statistical 907-911; Shirley, E.A.C. 1977. A non parametric equivalent of Williams' test for contrasting increasing dose levels of a treatment. Biometrics 33: 386-389; Sokal, R.R. and Rohlf, F.J. 1995. Biometry. 3rd Edition. San Francisco: W.H. pp. 369-371; Steel, R.G.D. 1959. A multiple comparison rank sum test: treatment versus control. Biometrics 15: 560-572.; Williams, D.A. 1971. A test for differences between treatment means when several dose levels are compared with a zero dose control. Biometrics 27: 103 117; Williams, D.A. 1972. The comparison of several dose levels with a zero dose control. Biometries 28: 519-531.

Reasons for Changes

- 1. Correction of the Experimental Start Date as per OECD GLP's.
- 2. Clarification of how the stability of the test substance will be documented.
- 3. Oversight in original protocol.
- 4. Removal of statistical procedures and references not relevant to this study.

Amendment approved by:	
(MAP)	280ch3
Gary M. Hoffman B.A., DABT	Date
Study Director	
Tromas Mann	10/28/03
Thomas M. Gray, M.S., DABT	Date
Thomas M. Gray M.S., DADT Sponsor Representative	

Huntingdon Life Sciences	03-6143	Page 1002
		Final Report
	Analytical Report	Appendix N

STUDY TITLE

Analytical Report For:

Butane:

A 2 Week Range-Finding Inhalation Toxicity Study in the Rat Via Whole-Body Inhalation Exposures

AUTHOR

Yonggang Wang

REPORT DATE

14 August 2008

STUDY NUMBER

03-6143

Fig	nal	Re	port

Analytical Report	Appendix N

SIGNATURES

Written by:

Yonggang Wang, M.S.

Laboratory manager

Formulation Chemistry Services

Date

Reviewed by: _

Kay Saladdin, B.S.

Associate Director

Formulation Chemistry Services

Approved by:

Barbara A. Litzenberger, B.S., MT(ASCP) Date

Director

Analytical Services

Huntingdon Life
Sciences

03-6143

Page 1004

 Analytical Report	Appendix N

Table of Contents

Study Title Page	1002
Signature Page	
Table of Contents	
1. Summary	1005
2. Experimental Procedures	
3. Results and Discussion	1005
Tables	
I Butane Characterization ("Pre-Study")	1006
Figures	
A Typical Gas Chromatogram of Butane Standard	1007
II A Typical Gas Chromatogram of Butane Test Substance	

Huntingdon Life Sciences	03-6143	Page 1005
		Final Report
	Analytical Report	Appendix N

1. Summary

The test substance and the analytical standard (Butane) were analyzed ("pre-study") to determine the purity and stability of the test substance by comparison to the analytical standard. The analytical method was validated at Huntingdon Life Sciences (HLS). The analytical method involved gas bag sampling of the test substance and the analytical standard and quantification using Gas Chromatography with Flame Ionization Detection (FID).

2. Experimental Procedures

The analytical method (HLS-012-03) was validated by Formulation Chemistry at HLS. Details of the analytical method and the validation are maintained in this study file.

Gas bag sampling of the test substance and the analytical standard was performed in the Inhalation Department at HLS. The test substance and the analytical standard were analyzed using a Gas Chromatograph equipped with a HP Plot Q (30 m x 0.32 mm, $20 \mu m$) column and Flame Ionization Detector (FID) to determine the purity of Butane test substance. HP 3396A integrator was used for data collection and Excel was used for processing the data.

Date of sample analysis is listed as follows:

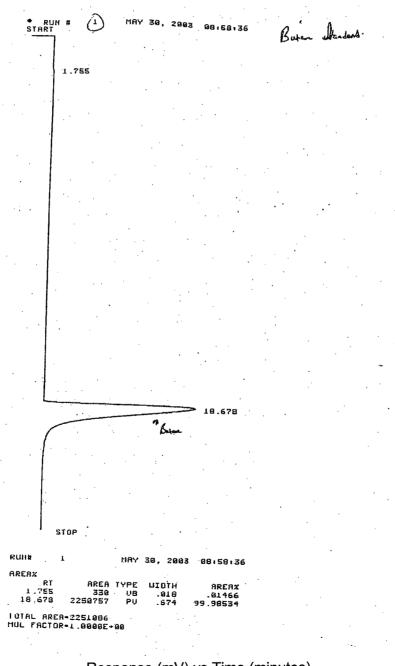
Interval	Date Analyzed
"Pre-Study"	30 May 03
Characterization	

3. Results and Discussion

The test substance and analytical standard (Butane) were analyzed prior to the initiation of the study to determine the purity of the test substance. Stability of the test substance was analyzed on the subsequent study (03-4242). The results of the characterization are presented in Tables I and II. A typical chromatogram of Butane standard is presented in Figure I. A typical chromatogram of Butane test substance is presented in Figure II.

Huntingdon Life Sciences	03-6143	Page 1006
		Final Report
	Analytical Report	Appendix N

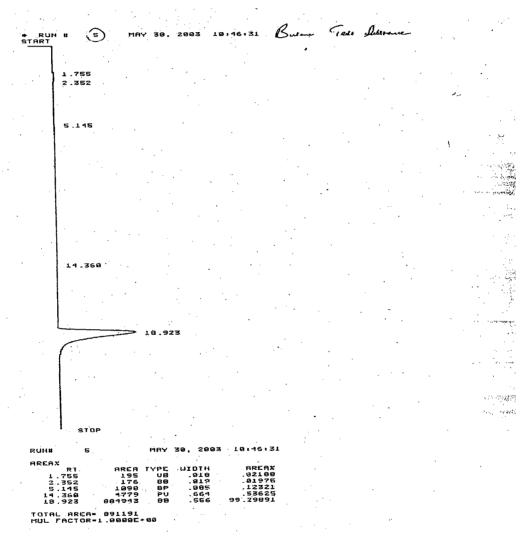
Table I: Characterization ("Pre-Study")


Sample ID	Area % of Ethane	Area % of Propane	Area % of Isobutane	Area % of Other Impurities	Area % of Butane Standard	Mean Area % of Butane Standard
Butane Standard	0.00	0.00	0.00	0.01	99.99	
Butane Standard	0.00	0.00	0.00	0.06	99.94	99.96
Butane Standard	0.00	0.00	0.00	0.05	99.95	

Sample ID	Area % of Ethane	Area % of Propane	Area % of Isobutane	Area % Other Impurities	Area % of Butane Substance	Mean Area % of Butane Test Substance
Butane Test Substance	0.02	0.12	0.69	0.01	99.16	
Butane Test Substance	0.02	0.12	0.54	0.02	99.30	99.23
Butane Test Substance	0.02	0.12	0.60	0.02	99.24	

03-6143

	Final Report
Analytical Deport	Appendix N
Analytical Report	Appendix N


Figure I. A Typical Gas Chromatogram of Butane Analytical Standard

Response (mV) vs Time (minutes)

Analytical Report	Appendix N

Figure II. A Typical Gas Chromatogram of Butane Test Substance

Response (mV) vs Time (minutes)

 Testing Facility Personnel	Appendix O

TITLE/DEPARTMENT	NAME/DEGREE
SENIOR VICE PRESIDENT, SAFETY ASSESSMENT	Sylvie J. Gosselin, D.V.M., Ph.D., Diplomate A.C.V.P.
DIRECTOR OF REPRODUCTIVE TOXICOLOGY	Keith P. Hazelden, B.Sc., M.I.Biol.
DIRECTOR, ANALYTICAL SERVICES	Barbara A. Litzenberger, B.S., M.T. (ASCP)
DIRECTOR, TOXICOLOGY OPERATIONS	lan Vanterpool, F.I.A.T.
DIRECTOR, QUALITY ASSURANCE	Nicki S. Iacono, B.S.
STUDY DIRECTOR	Gary M. Hoffman, B.A., D.A.B.T.
STUDY MONITOR	Tara A. Gankiewicz, B.A.
VETERINARIAN	Teresa S. Kusznir, V.M.D.
MANAGER/SUPERVISOR Inhalation Toxicology Pharmacy Analytical Services Necropsy	Robert Faust, B.S. Michael S. McCarthy Kay Saladdin, B.S. G. Elizabeth Baxter, B.S.

Huntingdon Life Sciences	03-6143	Page 1010 Final Report
	Report Amendments	Appendix P

There are no amendments for this report at this time.

1		
		1 00
	Report Amendments	Appendix OO
		1 1

The following is a list of changes made to the final report.

Page No.	Change 1	Reason for Change
1, 290, 498	Study title on cover pages revised to: "Butane: Combined Repeated-Exposure Toxicity with Reproduction/Developmental Toxicity and Neurotoxicity Screening in Rats via Whole-Body Inhalation Exposures" Also, amended report date added and total number of pages revised.	Study title revised per sponsor request and protocol amendment to include developmental endpoints.
4	Inclusion of Quality Assurance Statement with Report Amendment audit and new signature/date.	Additional audit of report amendment.
5, 6	Study title on summary revised to: "Butane: Combined Repeated-Exposure Toxicity with Reproduction/Developmental Toxicity and Neurotoxicity Screening in Rats via Whole-Body Inhalation Exposures"	Study title revised per sponsor request and protocol amendment to include developmental endpoints.
	Also, last sentence of conclusion revised to read "Therefore, a no observed adverse effect level (NOAEL) of 9000 ppm was determined for this study's systemic, reproductive/developmental, and neonatal endpoints."	Reproduction reference clarified to include developmental endpoints per sponsor request and protocol amendment.
13	Section 2.3, footnote c: reference to reproduction study was revised to "reproduction/developmental study".	Reproduction reference clarified to include developmental endpoints per sponsor request and protocol amendment.
14	Section 2.4.3, Test Animal Selection: reference to reproduction toxicity was revised to "reproduction/developmental toxicity".	Reproduction reference clarified to include developmental endpoints per sponsor request and protocol amendment.
45	Section 4. Conclusion: Last sentence revised to read "Therefore, a no observed adverse effect level (NOAEL) of 9000 ppm was determined for this study's systemic, reproductive/developmental, and neonatal endpoints."	Reproduction reference clarified to include developmental endpoints per sponsor request and protocol amendment.

	Report Amendments	Appendix OO
Page No.	Change 1	Reason for Change
49	Notes on the General Preface were numbered to add the following as No. 2: The study title was revised to "Butane: Combined Repeated-Exposure Toxicity with Reproduction/Developmental Toxicity and Neurotoxicity Screening in Rats via Whole-Body Inhalation Exposures" effective 16 November 2009. Only the cover page and summary of the report were revised to reflect this change since all other pages were computer generated based on the original study title.	Note added to clarify why the study title was revised and what sections of the report were affected.
	Also, the original note was corrected from Days 14-20 - Mating to Days 14-28 - Mating.	Correction of typographical error.
689 - 783	Appendix KK, Neurobehavioral Positive Control Data for functional observational battery and motor activity was replaced.	Positive control data was replaced with up-dated information from amended reports. Notes were added to the preface pages (689 and 758) clarifying source of information.
784	Preface to Protocol and Protocol Amendments removed, and protocol renumbered as pages 784 - 819.	Blank preface page removed as unnecessary.
820	Protocol amendment no. 4 added to report.	Addition of Protocol Amendment No. 4 revising the study title.

Note: The total number of pages in the report has increased to 1012 due to the additional page of this report amendment.

Gary M. Hoffman, B.A., D.A.B.T. Study Director

Date